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1. Introduction

1.1. The problem of implementing a quantum computer

The theory of information has been revolutionized by the discovery that quan-
tum algorithms can run exponentially faster than their classical counterparts, and
by the invention of quantum error-correction protocols [1]. These fundamen-
tal breakthroughs have lead scientists and engineers to imagine building entirely
novel types of information processors. However, the construction of a computer
exploiting quantum - rather than classical — principles represents a formidable
scientific and technological challenge. While quantum bits must be strongly
inter-coupled by gates to perform quantum computation, they must at the same
time be completely decoupled from external influences, except during the write,
control and readout phases when information must flow in and out of the quantum
computer. This difficulty does not exist for conventional (classical) bits, which
follow irreversible dynamics that damp the noise of the environment.

Most proposals for implementing a quantum computer have been based on
qubits constructed from microscopic degrees of freedom: electron or nuclear
spin, atomic transition dipoles and so on (see other lectures in this book). These
degrees of freedom are naturally very well isolated from their environment, and
hence decohere very slowly. The main challenge of these implementations is
enhancing the inter-qubit coupling to the level required for fast gate operations
without introducing decoherence from parasitic environmental modes and noise.

In this review, we will discuss a radically different experimental approach
based on “quantum integrated circuits,” where qubits are constructed from col-
lective electrodynamic modes of macroscopic electrical elements, rather than mi-
croscopic degrees of freedom. An advantage of this approach is that these qubits
have an intrinsically large electromagnetic cross-section, which implies they may
be easily coupled together in complex topologies via simple linear electrical el-
ements like capacitors, inductors, and transmission lines. However, strong cou-
pling also presents a related challenge: is it possible to isolate these electrody-
namic qubits from ambient parasitic noise while retaining open communication
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channels for the write, control, and read operations? The main purpose of this
article is to review the considerable progress that has been made in the past few
years towards this goal, and to explain how new ideas about methodology and
materials are likely to improve coherence to the threshold needed for quantum
€ITOr correction.

1.2. Scope of this review

Before starting our discussion, we must warn the reader that this review is atyp-
ical in that it is neither historical nor exhaustive. Some important works have
not been included or are only partially covered. We have on purpose narrowed
our focus: we adopt the point of view of an engineer trying to determine the best
strategy for building a reliable machine with given performances. This approach
obviously runs the risk of presenting a biased and even incorrect account of recent
scientific results, since the optimization of a complex system is always a intricate
process with many hidden passageways and dead-ends. We hope nevertheless
that the following sections will at least stimulate discussions on how to harness
the physics of quantum integrated circuits into a mature quantum information
processing technology.

After ending this introduction with a general presentation of quantum inte-
grated circuits, we will first treat the simplest example of circuits, the super-
conducting linear LC oscillator. Although it cannot lead to a useful qubit, this
circuit allows the presentation of the circuit variables and parameters with mini-
mal mathematical complications. We will then introduce the Josephson junction
as the crucial non-linear, non-dissipative element. The problem of dealing with
the fluctuations in the offset charge of the junction will lead us to the three basic
types of superconducting qubits. After showing how their coherence is affected
by the intrinsic noise of the junction we will embark on the discussion of how
to design a faithful and fast readout without compromising the coherence. Issues
associated with quantum gates will be finally dealt with.

2. Basic features of quantum integrated circuits

2.1. Ultra-low dissipation: superconductivity

For an integrated circuit to behave quantum mechanically, the first requirement
is very low dissipation. More specifically, all metallic parts need to be made
out of a material that has negligible resistance at the qubit operating temperature
and at the qubit transition frequency. The loss of only one energy quantum com-
pletely spoils quantum coherence. Low temperature superconductors [2] such
as aluminium or niobium are therefore ideal for the task of carrying quantum
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signals. For this reason, quantum integrated circuit implementations have been

|

nicknamed “superconducting qubits”".

2.2. Ultra-low noise : low temperature

The degrees of freedom of the quantum integrated circuit must be cooled to
temperatures where the typical energy kT of thermal fluctuations is much less
that the energy quantum fiwg; associated with the transition between the states
|qubit=0> and |qubit=1>. For reasons which will become clear in subsequent
sections, this frequency for superconducting qubits is in the 5-20GHz range and
therefore, the operating temperature temperature 7 must be around 20mK (Recall
that 1K corresponds to about 20 GHz). These temperatures may be readily ob-
tained by cooling the chip with a dilution refrigerator. Perhaps more importantly
though, the “electromagnetic temperature of the wires of the control and readout
ports connected to the chip must also be cooled to these low temperatures, which
requires careful electromagnetic filtering. Note that electromagnetic damping
mechanisms are usually stronger at low temperatures than those originating from
electron-phonon coupling. The techniques [3] and requirements [4] for ultra-
low noise filtering have been known for about 20 years. From the requirements
kT « hwor and fiwg; < A, where A is the energy gap of the superconducting
material, one must use superconducting materials with a transition temperature
greater than about 1K.

2.3. Non-linear, non-dissipative elements: tunnel junctions

Quantum signal processing cannot be performed using only purely linear com-
ponents. In quantum circuits, however, the non-linear elements must obey the
additional requirement of being non-dissipative. Elements like PIN diodes or
CMOS transistors are thus forbidden, even if they could be operated at ultra-low
temperatures.

There is only one electronic element that is both non-linear and non-dissipative
at arbitrarily low temperatures: the superconducting tunnel junction (also known
as a Josephson tunnel junction [S]). As illustrated in Fig. 1, this circuit element
consists of a sandwich of two superconducting thin films separated by an insu-
lating layer that is thin enough (typically ~1nm) to allow tunneling of discrete
charges through the barrier. In later sections we will describe how the tunnel-
ing of Cooper pairs creates a strong non-linear inductance, thus yielding viable

In principle, other condensed phases of electrons, such as high-Tc superconductivity or the quan-
tum Hall effect, both integer and fractional, are possible and would also lead to quantum integrated
circuits of the general type discussed here. We do not pursue this subject further than this note,
however, because dissipation in these new phases is, by far, not as well understood as in low-Tc
superconductivity.
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Fig. 1. a) Josephson tunnel junction made with two superconducting thin films; b) Schematic rep-
resentation of a Josephson tunnel junction. The irreducible Josephson element is represented by a
Cross.

qubit energy levels. The tunnel barrier is typically fabricated from oxidation
of the superconducting metal, which results in a reliable barrier since the oxi-
dation process is self-terminating [6]. The materials properties of amorphous
aluminum oxide (alumina) make it an attractive tunne! insulating layer. In part
because of its well-behaved oxide, aluminim is the material from which good
quality tunnel junctions are most easily fabricated, it is often said that aluminium
is to superconducting quantum circuits what silicon is to conventional MOSFET
circuits. Although the Josephson effect is a subtle physical effect involving a
combination of tunneling and superconductivity, the junction fabrication process
is relatively straightforward.

2.4. Design and fabrication of quantum integrated circuits

Superconducting junctions and wires are fabricated using techniques borrowed
from conventional integrated circuits’>. Quantum circuits are typically made on
silicon wafers using optical or electron-beam lithography and thin film deposi-
tion. They present themselves as a set of micron-size or sub-micron-size cir-
cuit elements (tunnel junctions, capacitors, and inductors) connected by wires or
transmission lines. The size of the chip and elements are such that, to a large
extent, the electrodynamics of the circuit can be analyzed using simple transmis-
sion line equations or even a lumped element approximation. Contact to the chip

21t is worth mentioning that chips with tens of thousands of junctions have been successfully
fabricated for the voltage standard and for the Josephson signal processors, which are only exploiting
the speed of Josephson elements, not their quantum properties.
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is made by wires bonded to mm-size metallic pads. The circuit can be designed
using conventional layout and classical simulation programs.

Thus, many of the design concepts and tools of conventional electronics can
be directly applied to quantum circuits. Nevertheless, there are still important
differences between conventional and quantum circuits at the conceptual level.

2.5. Integrated circuits that obey macroscopic quantum mechanics

At the conceptual level, conventional and quantum circuits differ in that, in the
former, the collective electronic degrees of freedom such as currents and volt-
ages are classical variables, whereas in the latter, these degrees of freedom must
be treated by quantum operators which do not necessarily commute. A more
concrete way of presenting this rather abstract difference is to say that a typical
electrical quantity, such as the charge on the plates of a capacitor, can be thought
of as a simple number is conventional circuits, whereas in quantum circuits, the
charge on the capacitor must be represented by a wave function giving the prob-
ability amplitude of all charge configurations. For example, the charge on the
capacitor can be in a superposition of states where the charge is both positive and
negative at the same time. Similarly the current in a loop might be flowing in two
opposite directions at the same time. These situations have originally been nick-
named “macroscopic quantum effects” by Tony Leggett [7] to emphasize that
quantum integrated circuits are displaying phenomena involving the collective
behavior of many particles, which are in contrast to the usual quantum effects
associated with microscopic particles such as electrons, nuclei or molecules’.

2.6. DiVicenzo criteria

We conclude this section by briefly mentioning how quantum integrated circuits
satisfy the so-called DiVicenzo criteria for the implementation of quantum com-
putation [8]. The non-linearity of tunnel junctions is the key property ensuring
that non-equidistant level subsystems can be implemented (criterion # 1: qubit
existence). As in many other implementations, initialization is made possible
(criterion #2: qubit reset) by the use of low temperature. Absence of dissipation
in superconductors is one of the key factors in the quantum coherence of the sys-
tem (criterion # 3: qubit coherence). Finally, gate operation and readout (criteria
#4 and #5) are easily implemented here since electrical signals confined to and
traveling along wires constitute very efficient coupling methods.

3These microscopic effects determine also the properties of materials, and explain phenomena
such as superconductivity and the Josephson effect itself. Both classical and quantum circuits share
this bottom layer of microscopic quantum mechanics.
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Fig. 2. Lumped element model] for an electromagnetic resonator: LC oscillator.

3. The simplest quantum circuit

3.1. Quantum LC oscillator

We consider first the simplest example of a quantum integrated circuit, the LC
oscillator. Although it cannot lead to a useful qubit, this circuit allows us to de-
scribe general key circuit variables and parameters with minimal mathematical
complications. As shown in Fig. 2, it consists of an inductor L connected to
a capacitor C, all metallic parts being superconducting. This simple circuit is
the lumped-element version of a superconducting cavity or a transmission line
resonator (for instance, the link between cavity resonators and LC circuits is ele-
gantly discussed by Feynman [9]). The equations of motion of the LC circuit are
those of an harmonic oscillator. It is convenient to take the position coordinate
as being the flux @ in the inductor, while the role of the conjugate momentum
is played by the charge Q on the capacitor. The variables ® and Q have to be
treated as canonically conjugate quantum operators that obey [P, Q] = i4. The
Hamiltonian of the circuitis H = %CDZ /L + %Qz /C, which can be equivalently
written as H = hwo(n + %) where n is the number operator for photons in the
resonator and wy = 1/+/LC is the resonance frequency of the oscillator. It is
important to note that the parameters of the circuit Hamiltonian are not funda-
mental constants of Nature. They are engineered quantities with a large range
of possible values which can be modified easily by changing the dimensions of
elements, a standard lithography operation. It is in this sense, in our opinion, that
the system is unambiguously “macroscopic”. The other important combination
of the parameters L and C is the characteristic impedance Z = /L/C of the
circuit. Along with the residual resistance of the circuit and/or its radiation loss,
both of which we can model as a series resistance R, this impedance determines
the quality factor of the oscillation: @ = Z/R. The theory of the harmonic os-
cillator shows that a quantum superposition of ground state and first excited state
decays on a time scale precisely given by 1/RC, yielding a quality factor for
quantum coherence limited by Q. These considerations illustrate the very useful
general link between the classical measure of dissipation and the upper limit of
the quantum coherence time.



Superconducting qubits 453

3.2. Practical considerations

In practice, the circuit shown in Fig. 2 may be fabricated using planar com-
ponents with lateral dimensions around 10um, giving values of L and C ap-
proximately 0.1nH and 1pF, respectively, and yielding wo/27r ~ 16GHz and
Zo = 10Q. If we use aluminium, a good BCS superconductor with transition
temperature of 1.1K and a gap A /e ~200uV, dissipation from the breaking of
Cooper pairs will begin at frequencies greater than 2A /h =~ 100GHz. The
residual resistivity of a BCS superconductor decreases exponentially with the in-
verse of temperature and linearly with frequency, as shown by the Mattis-Bardeen
(MB) formula p (w) ~ poli—“’r exp{(—A/kpT) [10], where pg is the resistivity of
the metal in the normal state (we are treating here the case of the so-called “dirty”
superconductor [11], which is well adapted to thin film systems). According to
MB, the intrinsic losses of the superconductor, at the temperature and frequency
(typically 20mK and 20GHz) characterizing the qubit dynamics, can be safely
neglected. However, we must warn the reader that the intrisinsic losses in the
superconducting material do not exhaust, by far, the causes of dissipation, even
if very high quality factors have been demonstrated in superconducting cavity
experiments [12].

3.3. Matching to the vacuum impedance: a useful feature, not a bug

Although the intrisinsic dissipation of superconducting circuits can be made very
small, losses are in general governed by the coupling of the circuit with the elec-
tromagnetic environment that is present in the form of write, control and readout
lines. These lines (which we also refer to as ports) have a characteristic propaga-
tion impedance Z. =~ 50€2, which is constrained to be a fraction of the impedance
of the vacuum Z,, = 377%2. It is thus easy to see that our LC circuit, with a char-
acteristic impedance of Zy = 102, tends to be rather well impedance-matched
to any pair of leads. This circumstance occurs very frequently in circuits, and
almost never in microscopic systems such as atoms which interact very weakly
with electromagnetic radiation*. Matching to Zy,. is a useful feature because it
allows strong coupling for writing, reading, and logic operations. As we men-
tioned earlier, the challenge with quantum circuits is to isolate them from para-
sitic degrees of freedom. The major task of this review is to explain how this
has been achieved so far and what level of isolation is attainable.

4The impedance of an atom can be crudely seen as being given by the impedance quantum Rg =
h /ez. We live in a universe where the ratio Zy,./2Rg, also known as the fine structure constant
1/137.0, is a small number.
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3.4. The consequences of being macroscopic

While our example shows that quantum circuits can be mass-produced by stan-
dard microfabrication techniques and that their parameters can be easily engi-
neered to reach some optimal condition, it also points out evident drawbacks of
being macroscopic for qubits.

The engineered quantities L and C can be written as

L L' + AL (t) 3.1
C = C"+AC@H)

a) The first term on the right-handside denotes the static part of the parame-
ter. It has statistical variations: unlike atoms whose transition frequencies in
isolation are so reproducible that they are the basis of atomic clocks, circuits will
always be subject to parameter variations from one fabrication batch to another.
Thus prior to any operation using the circuit, the transition frequencies and cou-
pling strength will have to be determined by “diagnostic” sequences and then
taken into account in the algorithms.

b) The second term on the right-handside denotes the time-dependent fluctua-
tions of the parameter. It describes noise due to residual material defects moving
in the material of the substrate or in the material of the circuit elements them-
selves. This noise can affect for instance the dielectric constant of a capacitor.
The low frequency components of the noise will make the resonance frequency
wobble and contribute to the dephasing of the oscillation. Furthermore, the fre-
quency component of the noise at the transition frequency of the resonator will
induce transitions between states and will therefore contribute to energy relax-
ation.

Let us stress that statistical variations and noise are not problems affecting
superconducting qubit parameters only. For instance when several atoms or ions
are put together in microcavities for gate operation, patch potential effects lead
to expressions similar in form to Eq. 3.1 for the parameters of the hamiltonian,
even if the isolated single qubit parameters are fluctuation-free.

3.5. The need for non-linear elements

Not all aspects of quantum information processing using quantum integrated cir-
cuits can be discussed within the framwork of the LC circuit which lacks an
important ingredient: non-linearity. In the harmonic oscillator, all transitions
between neighbouring states are degenerate as a result of the parabolic shape
of the potential. In order to have a qubit, the transition frequency between
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states |qubit=0> and |qubit=1> must be sufficiently different from the transi-
tion between higher-lying eigenstates, in particular 1 and 2. Indeed, the maxi-
mum number of 1-qubit operations that can be performed coherently scales as
Qo1 lwgr — wi2| /wey where Qg is the quality factor of the 0 — 1 transition.
Josephson tunnel junctions are crucial for quantum circuits since they have a
strongly non-parabolic, inductive potential energy.

4. The Josephson non-linear inductance

At low temperatures, and at the low voltages and low frequencies corresponding
to quantum information manipulation, the Josephson tunnel junction behaves as
a pure non-linear inductance (Josephson element) in parallel with the capacitance
corresponding to the parallel plate capacitor formed by the two overlapping films
of the junction (Fig. 1b). This minimal, yet precise model, allows arbitrary
complex quantum circuits to be analysed by a quantum version of conventional
circuit theory. Even though the tunnel barrier is a layer of order ten atoms thick,
the value of the Josephson non-linear inductance is very robust against static
disorder, just like an ordinary inductance — such as the one considered in section
3 —is very insensitive to the position of each atom in the wire. We refer to [13]
for a detailed discussion of this point.

4.1. Constitutive equation

Let us recall that a linear inductor, like any electrical element, can be fully charac-
terized by its constitutive equation. Introducing a generalization of the ordinary
magnetic flux, which is only defined for a loop, we define the branch flux of
an electric element by ® (1) = fioo V(t1)dt), where V (¢) is the space integral
of the electric field along a current line inside the element. In this language, the
current I (¢t) flowing through the inductor is proportional to its branch flux ®(z):

1
1) =790 @.1)

Note that the generalized flux ®(¢) can be defined for any electric element
with two leads (dipole element), and in particular for the Josephson junction, even
though it does not resemble a coil. The Josephson element behaves inductively,
as its branch flux-current relationship [5] is:

1 (1) = Ipsin [21®(1)/ Do) (4.2)

This inductive behavior is the manifestation, at the level of collective electrical
variables, of the inertia of Cooper pairs tunneling across the insulator (kinetic
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inductance). The discreteness of Cooper pair tunneling causes the periodic flux
dependence of the current, with a period given by a universal quantum constant
dy, the superconducting flux quantum 4 /2e. The junction parameter Iy is called
the critical current of the tunnel element. It scales proportionally to the area of
the tunnel layer and diminishes exponentially with the tunnel layer thickness.
Note that the constitutive relation Eq. 4.2 expresses in only one equation the
two Josephson relations [5]. This compact formulation is made possible by the
introduction of the branch flux.

The purely sinusoidal form of the constitutive relation Eq. 4.2 can be traced
to the perturbative nature of Cooper pair tunneling in a tunnel junction. Higher
harmonics can appear if the tunnel layer becomes very thin, though their presence
would not fundamentally change the discussion presented in this review. The
quantity 2r ®(¢)/do = § is called the gauge-invariant phase difference accross
the junction (often abridged into “phase™). It is important to realize that at the
level of the constitutive relation of the Josephson element, this variable is nothing
else than an electromagnetic flux in dimensionless units. In general, we have

6 = é mod 2w

where 6 is the phase difference between the two superconducting condensates on
both sides of the junction. This last relation expresses how the superconducting
ground state and electromagnetism are tied together.

4.2. Other forms of the parameter describing the Josephson non-linear induc-
tance

The Josephson element is also often described by two other parameters, each
of which carry exactly the same information as the critical current. The first
one is the Josephson effective inductance L jo = ¢@o/lo, Where gg = $g /27 is
the reduced flux quantum. The name of this other form becomes obvious if we
expand the sine function in Eq. 4.2 in powers of ® around ¢ = 0. Keeping
the leading term, we have I = ®/L ;9. Note that the junction behaves for small
signals almost as a point-like kinetic inductance: a 100nm x 100nm area junction
will have a typical inductance of 100nH, whereas the same inductance is only
obtained magnetically with a loop of about 1cm in diameter. More generally, it
is convenient to define the phase-dependent Josephson inductance

a1\ Ly
" cosd

Ly®)=|—
1 (8) ( 20

Note that the Josephson inductance not only depends on §, it can actually
become infinite or negative! Thus, under the proper conditions, the Josephson
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Fig. 3. Sinusoidal current-flux relationship of a Josephson tunnel junction, the simplest non-linear,
non-dissipative electrical element (solid line). Dashed line represents current-flux relationship for a
linear inductance equal to the junction effective inductance.

element can become a switch and even an active circuit element, as we will see
below.

The other useful parameter is the Josephson energy E; = ¢ lp. If we compute
the energy stored in the junction as E(t) = f:oo I(t))V (t)dt,wefind E(t) =
—E; cos [27r D)/ <I>0]. In contrast with the parabolic dependence on flux of the
energy of an inductor, the potential associated with a Josephson element has the
shape of a cosine washboard. The total height of the corrugation of the washboard
is2FE J-

4.3. Tuning the Josephson element

A direct application of the non-linear inductance of the Josephson element is
obtained by splitting a junction and its leads into 2 equal junctions, such that the
resulting loop has an inductance much smaller the Josephson inductance. The
two smaller junctions in parallel then behave as an effective junction [14] whose
Josephson energy varies with ®,,,, the magnetic flux externally imposed through
the loop:

Ej (Pext) = Ej cos (m Pext/ Po) (4.3)

Here, E; the total Josephson energy of the two junctions. The Josephson energy
can be modulated in a similar fashion by applying a magnetic field in the plane
parallel to the tunnel layer.

5. The quantum isolated Josephson junction

5.1. Form of the hamiltonian

If we leave the leads of a Josephson junction unconnected, we obtain the simplest
example of an non-linear electrical resonator. In order to analyse its quantum dy-
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namics, we apply the prescriptions of quantum circuit theory briefly summarized
in Appendix 1. Choosing a representation privileging the branch variables of the
Josephson element, the momentum corresponds to the charge Q = 2eN having
tunneled through the element and the canonically conjugate position is the flux
® = b associated with the superconducting phase difference across the tunnel
layer. Here, N and 6 are treated as operators that obey [0, N] = i. It is impor-
tant to note that the operator N has integer eigenvalues whereas the phase 9 is
an operator corresponding to the position of a point on the unit circle (an angle
modulo 27).

By eliminating the branch charge of the capacitor, we obtain the hamiltonian

H=Ec;(N—Q,/2)* — Ejcosf (5.1

2
where Ec; = % is the Coulomb charging energy corresponding to one Cooper

pair on the junction capacitance C; and where Q, is the residual offset charge
on the capacitor.

One may wonder how the constant Q, got into the hamiltonian, since no such
term appeared in the corresponding LC circuit in section 3. The continuous
charge Q, is equal to the charge that pre-existed on the capacitor when it was
wired with the inductor. Such offset charge is not some nit-picking theoretical
construct. Its physical origin is a slight difference in work function between
the two electrodes of the capacitor and/or an excess of charged impurities in the
vicinity of one of the capacitor plates relative to the other. The value of Q,
is in practice very large compared to the Cooper pair charge 2e, and since the
hamiltonian 5.1 is invariant under the transformation N — N £ 1, its value can
be considered completely random.

Such residual offset charge also exists in the LC circuit. However, we did
not include it in our description of section 3 since a time-independent Q, does
not appear in the dynamical behavior of the circuit: it can be removed from the
hamiltonian by performing a trivial canonical transformation leaving the form of
the hamiltonian unchanged.

It is not possible, however, to iron this constant out of the isolated junction
hamiltonian 5.1 because the potential is not quadratic in §. The parameter Q,
plays a role here similar to the vector potential appearing in the hamiltonian of
an electron in a magnetic field.

5.2. Fluctuations of the parameters of the hamiltonian

The hamiltonian 5.1 thus depends on three parameters which, following our dis-
cussion of the LC oscillator, we write as
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0 = OJ"+AQ- () (5.2)
Ec = El!+AEc()
E; = E‘}mr-l-AEj(t)

in order to distinguish the static sample-to-sample variation resulting from fab-
rication irreproducibility from the time-dependent fluctuations. While Q%' can
be considered fully random (see above discussion), E¢**' and E%'*' can generally
be adjusted to a precision better than 20%. The relative fluctuations A Q, (¢) /2e
and AE; (t) /E; are found to have a 1/f power spectral density with a typi-
cal standard deviations at 1Hz roughly of order 103Hz~!/? and 10~5Hz~!/2,
respectively, for a junction with a typical area of 0.01um? [15]. The noise ap-
pears to be produced by independent two-level fluctuators [16]. The relative
fluctuations AE¢ (¢) /E¢ are much less known, but the behavior of some glassy
insulators at low temperatures might lead us to expect also a 1/f power spectral
density, but probably with a weaker intensity than those of AE; (t) /E;. We
refer to the 3 noise terms in Eq.5.2 as offset charge, dielectric and critical current
noises, respectively.

6. Why three basic types of Josephson qubits?

The first-order problem in realizing a Josephson qubit is to suppress as much as
possible the detrimental effect of the fluctuations of Q,, while retaining the non-
linearity of the circuit. There are three main stategies for solving this problem and
they lead to three fundamental basic type of qubits involving only one Josephson
element.

6.1. The Cooper pair box

The simplest circuit is called the “Cooper pair box™ and was first described theo-
retically, albeit in a slightly different version than presented here, by M. Biittiker
[17]. It was first realized experimentally by the Saclay group in 1997 [18). Quan-
tum dynamic in the time domain was first seen by the NEC group in 1999 [19].
In the Cooper pair box, the variations of the residual offset charge Q, are com-
pensated by biasing the Josephson tunnel junction with a voltage source U in
series with a “gate” capacitor C, (see Fig. 4a). One can easily show that the
hamiltonian of the Cooper pair box is

H = Ec (N — N;)* — Ejcost 6.1)
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Dy
L
b) c)

Fig. 4. a) Cooper pair box (prototypal charge qubit), b) RE-SQUID (prototypal fiux qubit) and c)
current-biased junction (prototypal phase qubit). The charge qubit and the flux qubit requires small
junctions fabricated with e-beam lithography while the phase qubit can be fabricated with conven-
tional optical lithography.

E/E,

Fig. 5. Potential landscape for the phase in a Cooper pair box (thick solid line). The first few levels
for E;/Ec = 1 and Ng = 1/2 are indicated by thin horizontal solid lines.

(2e)?
2(C,+Cy)
O, + C,U/2e. Note that this hamiltonian has the same form as hamiltonian
5.1. Often N is simply written as C,U/2e since U at the chip level will deviate
substantially from the generator value at high-temperature due to stray emf’s in
the low-temperature cryogenic wiring.

In Fig. 5 we show the potential in the 6 representation as well as the first few
energy levels for E;/Ec = 1 and Ny = 0. As shown in Appendix 2, the Cooper
pair box eigenenergies and eigenfunctions can be calculated with special func-
tions known with arbitrary precision, and in Fig 6 we plot the first few eigenen-
ergies as a function of N, for E;/Ec = 0.1 and E;/Ec = 1. Thus, the Cooper
box is to quantum circuit physics what the hydrogen atom is to atomic physics.
We can modify the spectrum with the action of two externally controllable elec-
trodynamic parameters: Ng, which is directly proportional to U, and E, which
can be varied by applying a field through the junction or by using a split junction
and applying a flux through the loop, as discussed in section 3. These parameters

Here Ec = is the charging energy of the island of the box and N, =
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Fig. 6. Energy levels of the Cooper pair box as a function of Ng, for two values of E;/Ec. As
Ej/Ec increases, the sensitivity of the box to variations of offset charge diminishes, but so does
the non-linearity. However, the non-linearity is the slowest function of £;/Ec and a compromise
advantageous for coherence can be found.

bear some resemblance to the Stark and Zeeman fields in atomic physics. For
the box, however much smaller values of the fields are required to change the
spectrum entirely.

We now limit ourselves to the two lowest levels of the box. Near the degener-
acy point N, = 1/2 where the electrostatic energy of the of the two charge states
N =0) and [N = 1) are equal, we get the reduced hamiltonian [18, 20]

Hqubit = —E; (062 + Xcontroiox) 6.2)

where, in the limit £;/Ec < 1, E; = %and Xecontrol = 22—5 (% - Ng>. In
Eq. 6.2, 0z and oy refer to the Pauli spin operators, with the X direction being
chosen along the charge operator, the variable of the box we can naturally couple
to.

If we plot the energy of the eigenstates of 6.2 as a function of the control
parameter X .u:r0/, We Obtain the universal level repulsion diagram shown in
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Fig. 7. Universal level anticrossing found both for the Cooper pair box and the RF-SQUID at their
“sweet spot”.

Fig. 7. Note that the minimum energy splitting is given by E;. Comparing
Eq. 6.2 with the spin hamiltonian in NMR, we see that E; plays the role of the
Zeeman field while the electrostatic energy plays the role of the transverse field.
Indeed we can send on the control port corresponding to U time-varying voltage
signals in the form of NMR-type pulses and prepare arbitrary superpositions of
states [21].

The expression 6.2 shows that at the “sweet spot” X onsro1 = 0, 1.€. the degen-
eracy point N, = %, the qubit transition frequency is to first order insentive to the
offset charge noise AQ,. We will discuss in the next section how an extension
of the Cooper pair box circuit can display quantum coherence properties on long
time scales by using this property.

In general, circuits derived from the Cooper pair box have been nicknamed
“charge qubits”. One should not think, however, that in charge qubits, quantum
information is encoded with charge. Both the charge N and phase 6 are quantum
variables and they are both uncertain for a generic quantum state. Charge in
“charge qubits” should be understood as refering to the "controlled variable", i.e.
the qubit variable that couples to the control line we use to write or manipulate
quantum information. In the following, for better comparison between the three
qubits, we will be faithful to the convention used in Eq. 6.2, namely that ox
represents the controlled variable.

6.2. The RF-SQUID

The second circuit — the so-called RF-SQUID [22] - can be considered in several
ways the dual of the Cooper pair box (see Fig. 4b). It employs a superconducting
transformer rather than a gate capacitor to adjust the hamiltonian. The two sides
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Fig. 8. Schematic potential energy landcape for the RF-SQUID.

of the junction with capacitance C; are connected by a superconducting loop
with inductance L. An external flux ®,,, is imposed through the loop by an
auxiliary coil. Using the methods of Appendix 1, we obtain the hamiltonian [7]

2 2
9 g cos [% (@ — cbexa] (6.3)

We are taking here as degree of freedom the integral ¢ of the voltage across the
inductance L, i.e. the flux through the superconducting loop, and its conjugate
variable, the charge ¢ on the capacitance Cj; [qS, q] = iA. Note that in this
representation, the phase 6, corresponding to the branch flux across the Josephson
element, has been eliminated. Note also that the flux ¢, in contrast to the phase
0, takes its values on a line and not on a circle. Likewise, its conjugate variable
g, the charge on the capacitance, has continuous eigenvalues and not integer

ones like N. Note that we now have three adjustable energy scales: E;, Ec; =
2

(2282 and E; = ;Lﬂ,

The potential in the flux representation is schematically shown in Fig. 8 to-
gether with the first few levels, which have been seen experimentally for the
first time by the SUNY group [23]. Here, no analytical expressions exist for the
eigenvalues and the eigenfunctions of the problem, which has two aspect ratios:
Ej/ECj and A = LJ/L -1

Whereas in the Cooper box the potential is cosine-shaped and has only one
well since the variable 6 is 2r-periodic, we have now in general a parabolic
potential with a cosine corrugation. The idea here for curing the detrimental
effect of the offset charge fluctuations is very different than in the box. First
of all Q7' has been neutralized by shunting the 2 metallic electrodes of the
junction by the superconducting wire of the loop. Then, the ratio E;/E¢y is
chosen to be much larger than unity. This tends to increase the relative strength
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of quantum fluctuations of ¢, making offset charge fluctuations A Q, small in
comparison. The resulting loss in the non-linearity of the first levels is compen-
sated by taking A close to zero and by flux-biasing the device at the half-flux
quantum value ®,,; = ®g/2. Under these conditions, the potential has two de-

generate wells separated by a shallow barrier with height Eg = %E 7. This
corresponds to the degeneracy value N, = 1/2 in the Cooper box, with the in-
ductance energy in place of the capacitance energy. At ®,,; = ®&g/2, the two
lowest energy levels are then the symmetric and antisymmetric combinations of
the two wavefunctions localized in each well, and the energy splitting between
the two states can be seen as the tunnel splitting associated with the quantum
motion through the potential barrier between the two wells, bearing close resem-
blance to the dynamics of the ammonia molecule. This splitting Es depends
exponentially on the barrier height, which itself depends strongly on E;. We
have Es = nvEgEc; exp (—&+/Ep/Ecy) where the numbers 1 and & have to
be determined numerically in most practical cases. The non-linearity of the first
levels results thus from a subtle cancellation between two inductances: the super-
conducting loop inductance L and the junction effective inductance -L ;o which
is opposed to L near ®,,; = ®g/2. However, as we move away from the degen-
eracy point ®,,; = /2, the splitting 2 E¢ between the first two energy levels

2
varies linearly with the applied flux E¢ = {%% (Ng — 1/2). Here the parameter
No = &,y /Po, also called the flux frustration, plays the role of the reduced
gate charge N,. The coefficient { has also to be determined numerically. We are
therefore again, in the vicinity of the flux degeneracy point ®,.,, = ®o/2 and for
Ej/Ecy > 1, in presence of the universal level repulsion behavior (see Fig. 7)
and the qubit hamiltonian is again given by

Hqubit = —E; (07 + XcontroiOx) (6.4)

where now E, = Es/2 and Xconirol = 2‘2—‘;’ (% — Nq>). The qubits derived from

this basic circuit [24,32] have been nicknamed “flux qubits”. Again, quantum in-
formation is not directly represented here by the flux ¢, which is as uncertain for a
general qubit state as the charge ¢ on the capacitor plates of the junction. The flux
¢ is the system variable to which we couple when we write or control information
in the qubit, which is done by sending current pulses on the primary of the RF-
SQUID transformer, thereby modulating Ng, which itself determines the strength
of the pseudo-field in the X direction in the hamiltonian 6.4. Note that the para-
meters Eg, Eg, and Ng are all influenced to some degree by the critical current
noise, the dielectric noise and the charge noise. Another independent noise can
also be present, the noise of the flux in the loop, which is not found in the box
and which will affect only No. Experiments on DC-SQUIDS [14] have shown
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Fig. 9. Tilted washboard potential of the current-biased Josephson junction.

that this noise, in adequate conditions, can be as low as 10-8(h/2e)/Hz™'/? at
a few KHz. However, experimental results on flux qubits (see below) seem to
indicate that larger apparent flux fluctuations are present, either as a result of flux
trapping or critical current fluctuations in junctions implementing inductances.

6.3. Current-biased junction

The third basic quantum circuit biases the junction with a fixed DC-current source
(Fig. 7c). Like the flux qubit, this circuit is also insensitive to the effect of
offset charge and reduces the effect of charge fluctuations by using large ratios
of E;j/Ecy. A large non-linearity in the Josephson inductance is obtained by
biasing the junction at a current / very close to the critical current. A current
bias source can be understood as arising from a loop inductance with L — oo
biased by a flux & — oo such that / = &/L. The Hamiltonian is given by

H = Ecyp?> — I9o8 — Ipgo cos$ , (6.5)

where the gauge invariant phase difference operator § is, apart from the scale
factor gy, precisely the branch flux across C;. Its conjugate variable is the charge
2ep on that capacitance, a continuous operator. We have thus [8, p] = i. The
variable 8, like the variable ¢ of the RF-SQUID, takes its value on the whole real
axis and its relation with the phase 6 is § mod 2w = 0 as in our classical analysis
of section 4.

The potential in the § representation is shown in Fig. 9. It has the shape of a
tilted washboard, with the tilt given by the ratio 7/Iy. When I approaches Iy, the
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phase is § ~ /2, and in its vicinity, the potential is very well approximated by
the cubic form

I
U@ =9 Uo—1@E—n/2) - onpo((s_n/z)g (6.6)

Note that its shape depends critically on the difference Ip— I. For I < Iy, there is
a well with a barrier height AU = (22/3) Ipgo (1 — 1/10)3/2 and the classical
oscillation frequency at the bottom of the well (so-called plasma oscillation) is
given by

1
VL(DCy

— ; [1 — /I )2]1/4
v LjoCy 0

Quantum-mechanically, energy levels are found in the well (see Fig. 11) [3] with
non-degenerate spacings. The first two levels can be used for qubit states [25],
and have a transition frequency wo; >~ 0.95w,.

A feature of this qubit circuit is built-in readout, a property missing from the
two previous cases. It is based on the possibility that states in the cubic potential
can tunnel through the cubic potential barrier into the continuum outside the bar-
rier. Because the tunneling rate increases by a factor of approximately 500 each
time we go from one energy level to the next, the population of the |1) qubit state
can be reliably measured by sending a probe signal inducing a transition from the
1 state to a higher energy state with large tunneling probability. After tunneling,
the particle representing the phase accelerates down the washboard, a convenient
self-amplification process leading to a voltage 2A /e across the junction. There-
fore, a finite voltage V # 0 suddenly appearing across the junction just after the
probe signal implies that the qubit was in state |1), whereas V = 0 implies that
the qubit was in state |0).

In practice, like in the two previous cases, the transition frequency wq) /27
falls in the 5-20GHz range. This frequency is only determined by material prop-
erties of the barrier, since the product C; L, does not depend on junction area.
The number of levels in the well is typically AU/hw), ~ 4.

Setting the bias current at a value I and calling A the variations of the dif-
ference I — Iy (originating either in variations of / or Ip), the qubit Hamiltonian
is given by

wp, =

Hyypir = hap1oz + Al(ox + x0z2), 6.7

2w01Cy
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where x = /Awy/3AU =~ 1/4 for typical operating parameters. In contrast
with the flux and phase qubit circuits, the current-biased Josephson junction does
not have a bias point where the 0— 1 transition frequency has a local minimum.
The hamiltonian cannot be cast into the NMR-type form of Eq. 6.2. How-
ever, a sinusoidal current signal Al (¢t) ~ sin gt can still produce oy rotations,
whereas a low-frequency signal produces oz operations [26].

In analogy with the preceding circuits, qubits derived from this circuit and/or
having the same phase potential shape and qubit properties have been nicknamed
“phase qubits” since the controlled variable is the phase (the X pseudo-spin di-
rection in hamiltonian 6.7).

6.4. Tunability versus sensitivity to noise in control parameters

The reduced two-level hamiltonians Eqs. 6.2,6.4 and 6.7 have been tested thor-
oughly and are now well-established. They contain the very important parametric
dependence of the coefficient of ox, which can be viewed on one hand as how
much the qubit can be tuned by an external control parameter, and on the other
hand as how much it can be dephased by uncontrolled variations in that parame-
ter. It is often important to realize that even if the control parameter has a very
stable value at the level of room-temperature electronics, the noise in the electri-
cal components relaying its value at the qubit level might be inducing detrimental
fluctuations. An example is the flux through a superconducting loop, which in
principle could be set very precisely by a stable current in a coil, and which in
practice often fluctuates because of trapped flux motion in the wire of the loop
or in nearby superconducting films. Note that, on the other hand, the two-level
hamiltonian does not contain the non-linear properties of the qubit, and how they
conflict with its intrinsic noise, a problem which we discuss in the next subsec-
tion.

6.5. Non-linearity versus sensitivity to intrinsic noise

The three basic quantum circuit types discussed above illustrate a general ten-
dency of Josephson qubits. If we try to make the level structure very non-linear,
i.e. |wor — wi2] > wo, we necessarily expose the system sensitively to at least
one type of intrinsic noise. The flux qubit is contructed to reach a very large non-
linearity, but is also maximally exposed, relatively speaking, to critical current
noise and flux noise. On the other hand, the phase qubit starts with a relatively
small non-linearity and acquires it at the expense of a precise tuning of the differ-
ence between the bias current and the critical current, and therefore exposes itself
also to the noise in the latter. The Cooper box, finally, acquires non-linearity at
the expense of its sensitivity to offset charge noise. The search for the optimal
qubit circuit involves therefore a detailed knowledge of the relative intensities
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of the various sources of noise, and their variations with all the construction pa-
rameters of the qubit, and in particular — this point is crucial — the properties
of the materials involved in the tunnel junction fabrication. No such in-depth
of knowledge exists at the time of this writing and one can only make educated
guesses.

The qubit optimization problem is also further complicated by the necessity
to readout quantum information, which we address just after reviewing the rela-
tionships between the intensity of noise and the decay rates of quantum informa-
tion.

7. Qubit relaxation and decoherence

A generic quantum state of a qubit can be represented as a unit vector K pointing
on a sphere, the so-called Bloch sphere. One distinguishes two broad classes of
errors. The first one corresponds to the tip of the Bloch vector diffusing along a
meridian, i.e. a great circle passing through the poles (latitude fluctuations). This
process is called energy relaxation or state-mixing. The second class corresponds
to the tip of the Bloch vector diffusing along a parallel, i.e. a circle perpendicular
to the line joining the two poles (longitude fluctuations). This process is called
dephasing or decoherence.

In Appendix 2 we define precisely these rates and show that they are directly
proportional to the power spectral densities of the noises entering in the parame-
ters of the hamiltonian of the qubit. More precisely, we find that the decoherence
rate is proportional to the total spectral density of the quasi-zero-frequency noise
in the qubit frequency. The relaxation rate, on the other hand, is proportional to
the total spectral density near the qubit frequency of the noise in the field perpen-
dicular to the eigenaxis of the qubit.

In principle, the expressions for the relaxation and decoherence rate could lead
to a ranking of the various qubit circuits: from their reduced spin hamiltonian,
one can find with what coefficient each basic noise source contributes to the var-
ious spectral densities entering in the rates. One could then optimize the various
parameters of the qubit to greatly reduce its sensitivity to noise. However, before
discussing this question further, we must realize that the readout itself can pro-
vide substantial additional noise sources for the qubit. Therefore, the design of
a qubit circuit that maximizes the number of coherent gate operations is a subtle
optimization problem which must treat in parallel both the intrinsic noises of the
qubit and the back-action noise of the readout.
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8. Readout of superconducting qubits

8.1. Formulation of the readout problem

We have examined so far the various basic circuits for qubit implementation and
their associated methods to write and manipulate quantum information. Another
important task quantum circuits must perform is the readout of that information.
As we mentioned earlier, the difficulty of the readout problem is to open a cou-
pling channel to the qubit for extracting information without at the same time
submitting it to noise.

Ideally, the readout part of the circuit — referred to in the following simply as
“readout” — should include both a switch, which defines an “OFF” and an “ON”
phase, and a state measurement device. During the OFF phase, where reset and
gate operations take place, the measurement device should be completely decou-
pled from the qubit degrees of freedom. During the ON phase, the measurement
device should be maximally coupled to a qubit variable that distinguishes the O
and the 1 state. However, this condition is not sufficient. The back-action of the
measurement device during the ON phase should be weak enough not to relax
the qubit [27].

The readout can be characterized by 4 parameters. The first one describes the
sensitivity of the measuring device while the next two describes its back-action,
factoring in the quality of the switch (see Appendix 3 for their definition):

i) the measurement time t,, defined as the time taken by the measuring
device to reach a signal-to-noise ratio of 1 in the determination of the state.

ii) the energy relaxation time I'’" of the qubit in the ON state.

iii) the coherence decay rate F20 FF of the qubit information in the OFF
state.

iv) the dead time #; needed to reset the measuring device after a qubit
measurement. The readout is usually perturbed by the energy expenditure asso-
ciated with producing a signal strong enough for external detection.

Simultaneously minimizing these parameters to improve readout performance
cannot be done without running into conflicts. An important quantity to opti-
mize is the readout fidelity. By construction, at the end of the ON phase, the
readout should have reached one of two classical states: 0. and 1., the outcomes
of the measurement process. The latter can be described by 2 probabilities: the
probability poo,(p11,.) that starting from the qubit state [0) (]1)) the measure-
ment yields O.(1. ). The readout fidelity (or discriminating power) is defined
as F = pooc + p11, — 1. For a measuring device with a signal-to-noise ratio
increasing like the square of measurement duration 7, we would have, if back-
action could be neglected, F = erf (27'/27/7,).
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8.2. Requirements and general strategies

The fidelity and speed of the readout, usually not discussed in the context of quan-
tum algorithms because they enter marginally in the evaluation of their complex-
ity, are actually key to experiments studying the coherence properties of qubits
and gates. A very fast and sensitive readout will gather at a rapid pace infor-
mation on the imperfections and drifts of qubit parameters, thereby allowing the
experimenter to design fabrication strategies to fight them or even correct them
in real time.

We are thus mostly interested in “single-shot” readouts [27], for which F is
order unity, as opposed to schemes in which a weak measurement is performed
continuously [28]. If F « 1, of order F~2 identical preparation and readout
cycles need to be performed to access the state of the qubit. The condition for
“single-shot” operation is

Ve, <1

The speed of the readout, determined both by 7, and ¢4, should be sufficiently
fast to allow a complete characterization of all the properties of the qubit before
any drift in parameters occurs. With sufficient speed, the automatic correction of
these drifts in real time using feedback will be possible.

Rapidly pulsing the readout on and off with a large decoupling amplitude such
that

r{ffn —1«1

requires a fast, strongly non-linear element, which is provided by one or more
auxiliary Josephson junctions. Decoupling the qubit from the readout in the OFF
phase requires balancing the circuit in the manner of a Wheatstone bridge, with
the readout input variable and the qubit variable corresponding to 2 orthogonal
electrical degrees of freedom. Finally, to be as complete as possible even in pres-
ence of small asymmetries, the decoupling also requires an impedance mismatch
between the qubit and the dissipative degrees of freedom of the readout. In the
next subsection, we discuss how these general ideas have been implemented in
2nd generation quantum circuits. The examples we have chosen all involve a
readout circuit which is built-in the qubit itself to provide maximal coupling dur-
ing the ON phase, as well as a decoupling scheme which has proven effective for
obtaining long decoherence times.

8.3. Phase qubit: tunneling readout with a DC-SQUID on-chip amplifier.

The simplest example of a readout is provided by a system derived from the
phase qubit (See Fig. 10). In the phase qubit, the levels in the cubic potential
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Fig. 10. Phase qubit implemented with a Josephson junction in a high-inductance superconducting
loop biased with a flux sufficiently large that the phase across the junction sees a potential analogous
to that found for the current-biased junction. The readout part of the circuit is an asymmetric hys-
teretic SQUID which is completely decoupled from the qubit in the OFF phase. Isolation of the qubit
both from the readout and control port is obtained through impedance mismatch of transformers.

are metastable and decay in the continuum, with level n + 1 having roughly a
decay rate I', 1 500 times faster than the decay I',, of level n. This strong level
number dependence of the decay rate leads naturally to the following readout
scheme: when readout needs to be performed, a microwave pulse at the transi-
tion frequency w2 (or better at w;3) transfers the eventual population of level 1
into level 2, the latter decaying rapidly into the continuum, where it subsequently
loses energy by friction and falls into the bottom state of the next corrugation of
the potential (because the qubit junction is actually in a superconducting loop of
large but finite inductance, the bottom of this next corrugation is in fact the ab-
solute minimum of the potential and the particle representing the system can stay
an infinitely long time there). Thus, at the end of the readout pulse, the sytem has
either decayed out of the cubic well (readout state 1) if the qubit was in the |1)
state or remained in the cubic well (readout state O.) if the qubit was in the |0)
state. The DC-SQUID amplifier is sensitive enough to detect the change in flux
accompanying the exit of the cubic well, but the problem is to avoid sending the
back-action noise of its stabilizing resistor into the qubit circuit. The solution to
this problem involves balancing the SQUID loop in such a way, that for readout
state O, the small signal gain of the SQUID is zero, whereas for readout state 1.,
the small signal gain is non-zero [16]. This signal dependent gain is obtained by
having 2 junctions in one arm of the SQUID whose total Josephson inductance
equals that of the unique junction in the other arm. Finally, a large impedance
mismatch between the SQUID and the qubit is obtained by a transformer. The fi-
delity of such readout is remarkable: 95% has been demonstrated. In Fig. 11, we
show the result of a measurement of Rabi oscillations with such qubit+readout.
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Fig. 11. Rabi oscillations observed for the qubit of Fig. 10.

8.4. Cooper-pair box with non-linear inductive readout: the “Quantronium”
circuit

The Cooper-pair box needs to be operated at its “sweet spot” (degeneracy point)
where the transition frequency is to first order insensitive to offset charge fluc-
tuations. The “Quantronium” circuit presented in Fig. 12 is a 3-junction bridge
configuration with two small junctions defining a Cooper box island, and thus
a charge-like qubit which is coupled capacitively to the write and control port
(high-impedance port). There is also a large third junction, which provides a
non-linear inductive coupling to the read port. When the read port current [ is
zero, and the flux through the qubit loop is zero, noise coming from the read
port is decoupled from the qubit, provided that the two small junctions are iden-
tical both in critical current and capacitance. When I is non-zero, the junction
bridge is out of balance and the state of the qubit influences the effective non-
linear inductance seen from the read port. A further protection of the impedance
mismatch type is obtained by a shunt capacitor across the large junction: at the
resonance frequency of the non-linear resonator formed by the large junction and
the external capacitance C, the differential mode of the circuit involved in the
readout presents an impedance of the order of an ohm, a substantial decoupling
from the 50K transmission line carrying information to the amplifier stage. The
readout protocol involves a DC pulse [21,29] or an RF pulse [30] stimulation of
the readout mode. The response is bimodal, each mode corresponding to a state
of the qubit. Although the theoretical fidelity of the DC readout can attain 95%,
only a maximum of 40% has been obtained so far. The cause of this discrepancy
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Fig. 12. “Quantronium” circuit consisting of a Cooper pair box with a non-linear inductive read-
out. A Wheatstone bridge configuration decouples qubit and readout variables when readout is OFF.
Impedance mismatch isolation is also provided by additional capacitance in parallel with readout
junction.

is still under investigation.

In Fig. 13 we show the result of a Ramsey fringe experiment demonstrating
that the coherence quality factor of the quantronium can reach 25 000 at the sweet
spot [21]. By studying the degradation of the qubit absorption line and of the
Ramsey fringes as one moves away from the sweet spot, it has been possible to
show that the residual decoherence is limited by offset charge noise and by flux
noise [31]. In principle, the influence of these noises could be further reduced
by a better optimization of the qubit design and parameters. In particular, the
operation of the box can tolerate ratios of E;/E¢ around 4 where the sensitivity
to offset charge is exponentially reduced and where the non-linearity is still of
order 15%. The quantronium circuit has so far the best coherence quality factor.
We believe this is due to the fact that critical current noise, one dominant intrinsic
source of noise, affects this qubit far less than the others, relatively speaking, as
can be deduced from the qubit hamiltonians of section 6.

8.5. 3-junction flux qubit with built-in readout

Fig. 14 shows a third example of buit-in readout, this time for a flux-like qubit.
The qubit by itself involves 3 junctions in a loop, the larger two of the junctions
playing the role of the loop inductance in the basic RF-SQUID [32]. The advan-
tage of this configuration is to reduce the sensitivity of the qubit to external flux
variations. The readout part of the circuit involves 2 other junctions forming a
hysteretic DC-SQUID whose offset flux depends on the qubit flux state. The crit-
ical current of this DC-SQUID has been probed by a DC pulse, but an RF pulse
could be applied as in another flux readout. Similarly to the two previous cases,
the readout states 1, and 0., which here correspond to the DC-SQUID having
switched or not, map very well the qubit states |1) and |0), with a fidelity better
than 60%. Here also, a bridge technique orthogonalizes the readout mode, which
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Fig. 13. Measurement of Ramsey fringes for the Quantronium. Two /2 pulses separated by a vari-
able delay are applied to the qubit before measurement. The frequency of the pulse is slightly detuned
from the transition frequency to provide a stroboscopic measurement of the Larmor precession of the
qubit.

is the common mode of the DC-SQUID, and the qubit mode, which is coupled
to the loop of the DC-SQUID. External capacitors provide additional protection
through impedance mismatch. Fig. 15 shows Ramsey fringes obtained with this
system.

8.6. Too much on-chip dissipation can be bad: Do not stir up the dirt!

All the circuits above include an on-chip amplification scheme producing high-
level signals which can be read directly by high-temperature low-noise electron-
ics. In the second and third examples, these signals lead to non-equilibrium quasi-
particle excitations being produced in the near vicinity of the qubit junctions. An
elegant experiment has recently demonstrated that the presence of these excita-
tions increases the offset charge noise [33]. More generally, one can legitimately
worry that large energy dissipation on the chip itself will lead to an increase of the
noises discussed in section 5.2. A broad class a new readout schemes addresses
this question [30, 34, 35]. They are based on a purely dispersive measurement of
a qubit susceptibility (capacitive or inductive). A probe signal is sent to the qubit.
The signal is coupled to a qubit variable whose average value is identical in the 2
qubit states (for instance, in the capacitive susceptibility, the variable is the island
charge in the charge qubit at the degeneracy point). The state-dependent phase
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Fig. 14. Three-junction flux qubit with a non-linear inductive readout. The medium-size junctions
play the role of an inductor. Bridge configuration for nulling out back-action of readout is also
employed here, as well as impedance mismatch provided by additional capacitance.
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Fig. 15. Panel A: Ramsey fringes obtained for qubit of Fig. 14. Panel B: echo showing the fast
dynamics of decoherence processes.
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shift of the reflected signal is then amplified by a linear low-temperature ampli-
fier and finally discriminated at high temperature against an adequately chosen
threshold. In addition to being very thrifty in terms of energy being dissipated on
chip, these new schemes also provide a further natural decoupling action: when
the probe signal is off, the back-action of the amplifier is also completely shut
off.

9. Coupling superconducting qubits

A priori, 3 types of coupling scheme can be envisioned:

a) In the first type, the transition frequency of the qubits are all equal and
the coupling between any pair is switched on using one or several junctions as
non-linear elements [36,37].

b) In the second type, the couplings are fixed, but the transition frequencies of
a pair of qubits, originally detuned, are brought on resonance when the coupling
between them needs to be turned on [38,39].

¢) In the third type, which bears close resemblance to the methods used in
NMR [1], the couplings and the resonance frequencies of the qubits remain fixed,
the qubits being always detuned. Being off-diagonal, the coupling elements have
negligible action on the qubits. However, when a strong microwave field is ap-
plied to the target and control qubits at their mean frequency, they become in
“speaking terms” for the exchange of energy quanta and gate action can take
place [40].

So far only scheme b) has been tested experimentally.

The advantage of schemes b) and c) is that they work with purely passive re-
active elements like capacitors and inductors which should remain very stable as
a function of time and which also should present very little high-frequency noise.
In a way, we must design quantum integrated circuits in the manner that vacuum
tube radios were designed in the 50’s: only 6 tubes were used for a complete
heterodyne radio set, including the power supply. Nowadays several hundreds of
transistors are used in a radio or any hi-fi system. In that ancient era of classi-
cal electronics, linear elements like capacitors, inductors or resistors were “free”
because they were relatively reliable whereas tubes could break down easily. We
have to follow a similar path in quantum integrated circuit, the reliability issues
having become noise minimization issues.

10. Can coherence be improved with better materials?

Up to now, we have discussed how, given the power spectral densities of the
noises AQ,, AEc and AE,, we could design a qubit equipped with control,
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readout and coupling circuits. It is worthwhile to ask at this point if we could
improve the material properties to gain in the coherence of the qubit, assuming
all other problems like noise in the control channels and the back-action of the
readout have been solved. A model put forward by one of us (JMM) and collabo-
rators shed some light on the direction one would follow to answer this question.
The 1/f spectrum of the materials noises suggests that they all originate from
2-level fluctuators in the amorphous alumina tunnel layer of the junction itself,
or its close vicinity. The substrate or the surface of the superconducting films are
also suspect in the case of AQ, and A E¢ but their influence would be relatively
weaker and we ignore them for simplicity. These two-level systems are supposed
to be randomly distributed positional degrees of freedom &; with effective spin-
1/2 properties, for instance an impurity atom tunneling between two adjacent
potential wells. Each two-level system is in principle characterized by 3 para-
meters: the energy splitting fiw;, and the two coefficients «; and B; of the Pauli
matrix representation of & = «;0;; + Bioi,. The random nature of the problem
leads us to suppose that ¢; and 8; are both Gaussian random variables with the
same standard deviation p;. By carrying a charge, the thermal and quantum mo-

tion of & can contribute to AQ, = Zi gi&i and AEc = Zi Ci f}—faiz. Likewise,
by modifying the transmission of a tunneling channel in its vicinity, the motion
of & can contribute to AE; = ), g;&. We can further suppose that the quality
of the material of the junction is simply characterized by a few numbers. The es-
sential one is the density v of the transition frequencies w; in frequency space and
in real space, assuming a o~ distribution (this is necessary to explain the 1/f
behavior) and a uniform spatial distribution on the surface of the junction. Re-
cent experiments indicate that the parameter v is of order10°um~2(decade) ™.
Then, assuming a universal p independent of frequency, only one coefficient is
needed per noise, namely, the average modulation efficiency of each fluctuator.
Such analysis provides a common language for describing various experiments
probing the dependence of decoherence on the material of the junction. Once the
influence of the junction fabrication parameters (oxydation pressure and temper-
ature, impurity contents, and so on) on these noise intensities will be known, it
will be possible to devise optimized fabrication procedures, in the same way per-
haps as the 1/f noise in C-MOS transistors has been reduced by careful material
studies.

11. Concluding remarks and perspectives
The logical thread through this review of superconducting qubits has been the

question “What is the best qubit design?”. We unfortunately cannot, at present,
conclude by giving a definitive answer to this complex optimisation problem.
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Yet, a lot has already been achieved, and superconducting qubits are becom-
ing serious competitors of trapped ions and atoms. The following properties of
quantum circuits have been demonstrated:

a) Coherence quality factors Q, = T,wo; can attain at least 2. 104

b) Readout and reset fidelity can be greater than 95%

¢) All states on the Bloch sphere can be addressed

d) Spin echo techniques can null out low frequency drift of offset charges

e) Two qubits can be coupled and RF pulses can implement gate operation

f) A qubit can be fabricated using only optical lithography techniques

The major problem we are facing is that these various results have not been
obtained at the same time IN THE SAME CIRCUIT, although succesful design
elements in one have often been incorporated into the next generation of others.
The complete optimization of the single qubit+readout has not been achieved
yet. However, we have presented in this review the elements of a systematic
methodology resolving the various conflicts that are generated by all the different
requirements. Our opinion is that, once noise sources are better characterized, an
appropriate combination of all the known circuit design strategies for improving
coherence, as well as the understanding of optimal tunnel layer growth conditions
for lowering the intrinsic noise of Josephson junctions, should lead us to reach the
1-qubit and 2-qubit coherence levels needed for error correction [43]. Along the
way, good medium term targets to test overall progress on the simultaneous fronts
of qubit coherence, readout and gate coupling are the measurement of Bell ’s
inequality violation or the implementation of the Deutsch-Josza algorithm, both
of which requiring the simultaneous satisfaction of properties a)-e).
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12. Appendix1: Quantum circuit theory

The problem we are addressing in this section is, given a superconducting circuit
made up of capacitors, inductors and Josephson junctions, how to systematically
write its quantum hamiltonian, the generating function from which the quantum
dynamics of the circuit can be obtained. This problem has been considered first
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by Yurke and Denker [44] in a seminal paper and analyzed in further details by
Devoret [45]. We will only summarize here the results needed for this review.

The circuit is given as a set of branches, which can be capacitors, inductors
or Josephson tunnel elements, connected at nodes. Several independent paths
formed by a succession of branches can be found between nodes. The circuit can
therefore contain one or several loops. It is important to note that a circuit has
not one hamiltonian but many, each one depending on a particular representation.
We are describing here one particular type of representation, which is usually
well adapted to circuits containing Josephson junctions. Like in classical circuit
theory, a set of independent current and voltages has to be found for a particular
representation. We start by associating to each branch b of the circuit, the current
i flowing through it and the voltage v, across it (a convention has to be made
first on the direction of the branches). Kirchhoff’s laws impose relations among
branch variables and some of them are redundant. The following procedure is
used to eliminate redundant branches: one node of the circuit is first chosen as
ground. Then from the ground, a loop-free set of branches called spanning tree
is selected. The rule behind the selection of the spanning tree is the following:
each node of the circuit must be linked to the ground by one and only one path
belonging to the tree. In general, inductors (linear or non-linear) are preferred as
branches of the tree but this is not necessary. Once the spanning tree is chosen
(note that we still have many possibilities for this tree), we can associate to each
node a “node voltage” v, which is the algebraic sum of the voltages along the
branches between ground and the node. The conjugate “node current” i, is the
algebraic sum of all currents flowing to the node through capacitors ONLY. The
dynamical variables appearing in the hamiltonian of the circuit are the node fluxes
and node charges defined as

t
Dn / v(t1)dn

t
/ i (m)dn

Using Kirchhoff’s laws, it is possible to express the flux and the charge of each
branch as a linear combination of all the node fluxes and charges, respectively.
In this inversion procedure, the total flux through loops imposed by external flux
bias sources and polarisation charges of nodes imposed by charge bias sources,
appear.

If we now sum the energies of all branches of the circuit expressed in terms
of node flux and charges, we will obtain the hamiltonian of the circuit corre-
sponding to the representation associated with the particular spanning tree. In

qn
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this hamiltonian, capacitor energies behave like kinetic terms while the inductor
energies behave as potential terms. The hamiltonian of the LC circuit written in
section 2 is an elementary example of this procedure.

Once the hamiltonian is obtained it is easy get its quantum version by replac-
ing all the node fluxes and charges by their quantum operator equivalent. The
flux and charge of a node have a commutator given by i#, like the position and
momentum of a particle:

o > ¢
g —> q
(6.4] = in

One can also show that the flux and charge operators corresponding to a
branch share the same commutation relation. Note that for the special case of
the Josephson element, the phase 6 and Cooper pair number N, which are its
dimensionless electric variables, have the property:

[0.8] =

In the so-called charge basis, we have

N

Il

ZNIN) (N
N

cosfh = %XN:(IN) (N+ 1|+ |N+)(N])

while in the so-called phase basis, we have

F =102 01
ST

Note that since the Cooper pair number N is an operator with integer eigen-
values, its conjugate variable 6, has eigenvalues behaving like angles, i.e. they
are defined only modulo 2.

In this review, outside this appendix, we have dropped the hat on operators for
simplicity.
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13. Appendix 2: Eigenenergies and eigenfunctions of the Cooper pair box

From Appendix 1, it easy to see that the hamiltonian of the Cooper pair box leads
to the Schrodinger equation
3 2
[EC (% — Ng) — Ejcosf | W (0) = Ex Vi (9)
i
The functions Wy (9) e~*¢ and energies Ej are solutions of the Mathieu equa-

tion and can be found with arbitrary precision for all values of the parameters N,
and E;/Ec [46]. For instance, using the program Mathematica, we find

E. = ECMA[k+1—(k+1)m0d2+2Ng(—1)",—2E1/Ec]
&N AE, —2E; 6
\IJ 0 = —/—‘ v T~ A
x (0) 271[ C[EC Ec 2]
4E, —2E; @
i(—1 k-HM K , =
+i(—-1) S\ Ec’ Ec 2

where M 4(r, g) = MathieuCharacteristicAl[r,q],
Mc (a,q,7) =MathieuCla,q,z],
Ms (a,q,z) =MathieuSla,q, z].

14. Appendix 3: Relaxation and decoherence rates for a qubit

Definition of the rates

We start by introducing the spin eigenreference frame z, x and y consisting of the
unit vector along the eigenaxis and the associated orthogonal unit vectors (X is in
the X Z plane). For instance, for the Cooper pair box, we find that Z = cos aZ +
sina X, with tano = 2E¢ (Ng — 1/2) /Ej, while x = — sinaZ + cosaX.

Starting with TS’) pointing along ¥ at time ¢ = 0, the dynamics of the Bloch
vector in absence of relaxation or decoherence is

S0 (1) = cos (wo1) £ + sin (wo1)

In presence of relaxation and decoherence, the Bloch vector will deviate from

4 . e s ~
S o (t) and will reach eventually the equilibrium value S;? 7, where S;? = tanh
We define the relaxation and decoherence rates as

hawg)
2kpT
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_ 5%
mln(sz (®) — 5¢9)

r, =
t—00 t
— =
S@).So)
n | 50500)
S 0)-5:2
ry = lim——=—— =
1—>00 t

Note that these rates have both a useful and rigorous meaning only if the evo-
lution of the components of the average Bloch vector follows, after a negligibly
short settling time, an exponential decay. The I'y and Iy rates are related to the
NMR spin relaxation times 7} and T3 [47] by

n = 1y
I = (1"<;>-1-1“|/2)_1

The T, time can be seen as the net decay time of quantum information, includ-
ing the influence of both relaxation and dephasing processes. In our discussion
of superconducting qubits, we must separate the contribution of the two type of
processes since their physical origin is in general very different and cannot rely
on the 7> time alone.

Expressions for the rates

The relaxation process can be seen as resulting from unwanted transitions be-
tween the two eigenstate of the qubit induced by fluctuations in the effective
fields along the x and y axes. Introducing the power spectral density of this field,
one can demonstrate from Fermi’s Golden Rule that, for perturbative fluctuations,

_ Sx (wo1) + Sy (wo1)

I 2

Taking the case of the Cooper pair box as an example, we find that S, (wo1) =
0 and that

+00
S (@) = / dte™ (A (1) A 0) + (B () B (0))

-0
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where

AE; () E

A (t) _ J ( ) el
2./E? + E2,
EjAE (¢

B(I) _ J el( )
2,/E% + E?

E, = 2Ec¢ (Ng—l/2)

Since the fluctuations A E,; (¢) can be related to the impedance of the environ-
ment of the box [18,20,48], an order of magnitude estimate of the relaxation rate
can be performed, and is in rough agreement with observations [21,49].

The decoherence process, on the other hand, is induced by fluctuations in the
effective field along the eigenaxis z. If these fluctuations are Gaussian, with a
white noise spectral density up to frequencies of order several I'y, (which is often
not the case because of the presence of 1/f noise) we have

S (wx0)

Iy 2

In presence of a low frequency noise with an 1/f behavior, the formula is more
complicated [50]. If the environment producing the low frequency noise consists
of many degrees of freedom, each of which is very weakly coupled to the qubit,
then one is in presence of classical dephasing which, if slow enough, can in prin-
ciple be fought using echo techniques. If, one the other hand, only a few degrees
of freedom like magnetic spins or glassy two-level systems are dominating the
low frequency dynamics, dephasing is quantum and not correctable, unless the
transition frequencies of these few perturbing degrees of freedom is itself very
stable.
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1. Introduction

Josephson junctions are good candidates for the construction of quantum bits
(qubits) for a quantum computer{1]. This system is attractive because the low
dissipation inherent to superconductors make possible, in principle, long coher-
ence times. In addition, because complex superconducting circuits can be mi-
crofabricated using integrated-circuit processing techniques, scaling to a large
number of qubits should be relatively straightforward. Given the initial success
of several types of Josephson qubits[2, 3, 4, 5, 6,7, 9, 8, 10], a question naturally
arises: what are the essential components that must be tested, understood, and
improved for eventual construction of a Josephson quantum computer?

In this paper we focus on the physics of the Josephson junction because, being
nonlinear, it is the fundamental circuit element that is needed for the appearance
of usable qubit states. In contrast, linear circuit elements such as capacitors and
inductors can form low-dissipation superconducting resonators, but are unusable
for qubits because the energy-level spacings are degenerate. The nonlinearity
of the Josephson inductance breaks the degeneracy of the energy level spacings,
allowing dynamics of the system to be restricted to only the two qubit states.
The Josephson junction is a remarkable nonlinear element because it combines
negligible dissipation with extremely large nonlinearity - the change of the qubit
state by only one photon in energy can modify the junction inductance by order
unity!

Most theoretical and experimental investigations with Josephson qubits as-
sume perfect junction behavior. Is such an assumption valid? Recent experi-
ments by our group indicate that coherence is limited by microwave-frequency
fluctuations in the critical current of the junction[10]. A deeper understanding of
the junction physics is thus needed so that nonideal bebavior can be more readily
identified, understood, and eliminated. Although we will not discuss specific
imperfections of junctions in this paper, we want to describe a clear and precise
model of the Josephson junction that can give an intuitive understanding of the
Josephson effect. This is especially needed since textbooks do not typically de-
rive the Josephson effect from a microscopic viewpoint. As standard calculations
use only perturbation theory, we will also need to introduce an exact description
of the Josephson effect via the mesoscopic theory of quasiparticle bound-states.

The outline of the paper is as follows. We first describe in Sec. 2 the nonlinear
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Josephson inductance. In Sec. 3 we discuss the three types of qubit circuits, and
show how these circuits use this nonlinearity in unique manners. We then give a
brief derivation of the BCS theory in Sec. 4, highlighting the appearance of the
macroscopic phase parameter. The Josephson equations are derived in Sec. 5
using standard first and second order perturbation theory that describe quasiparti-
cle and Cooper-pair tunneling. An exact calculation of the Josephson effect then
follows in Sec. 6 using the quasiparticle bound-state theory. Section 7 expands
upon this theory and describes quasiparticle excitations as transitions from the
ground to excited bound states from nonadiabatic changes in the bias. Although
quasiparticle current is typically calculated only for a constant DC voltage, the
advantage to this approach is seen in Sec. 8, where we qualitatively describe
quasiparticle tunneling with AC voltage excitations, as appropriate for the qubit
state. This section describes how the Josephson qubit is typically insensitive to
quasiparticle damping, even to the extent that a phase qubit can be constructed
from microbridge junctions.

2. The nonlinear Josephson inductance

A Josephson tunnel junction is formed by separating two superconducting elec-
trodes with an insulator thin enough so that electrons can quantum-mechanically
tunnel through the barrier, as illustrated in Fig. 1. The Josephson effect de-
scribes the supercurrent [ that flows through the junction according to the clas-
sical equations

I; =Iysiné (2.1a)
— Dods (2.1b)
2 dt

where ®g = h/2e is the superconducting flux quantum, Iy is the critical-current
parameter of the junction, and § = ¢, — ¢r and V are respectively the su-
perconducting phase difference and voltage across the junction. The dynamical
behavior of these two equations can be understood by first differentiating Eq. 2.1a
and replacing dd/dt with V according to Eq.2.1b

d—I—J = Ipcosd 2—”V . 2.2)

dt Dy
With d1; /dt proportional to V, this equation describes an inductor. By defin-
ing a Josephson inductance L; according to the conventional definition V =
L;dI;/dt, one finds

Do

= — 2.3a
2 Iy cos & ( )

Ly
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Fig. 1. Schematic diagram of a Josephson junction connected to a bias voltage V. The Josephson
current is given by /; = I sin &, where § = ¢ — ¢p is the difference in the superconducting phase
across the junction.

The 1/ cos$ term reveals that this inductance is nonlinear. It becomes large as
8 — m/2, and is negative for 7/2 < § < 3w /2. The inductance at zero bias is
Ljo= ®¢/2n .

An inductance describes an energy-conserving circuit element. The energy
stored in the junction is given by

U, =/1,de (2.42)
= [ 1psins 209, 2.4b
/osm o dr (2.4b)
1
= Do%o [ isas (2.4¢)
2
Io®
=070 oss . (2.4d)
2

This calculation of energy can be generalized for other nondissipative circuit
elements. For example, a similar calculation for a current bias gives Upjas =
—(I®p/2m)é. Conversely, if a circuit element has an energy U (3), then the
current-phase relationship of the element, analogous to Eq. 2.1a, is

2 UE)
1,(8) = Pl 2.5)

A generalized Josephson inductance can be also be found from the second deriv-

ativeof U ,
1 27 \? 32U (8
= (Z ©) (2.6)
L, Do/ 852

The classical and quantum behavior of a particular circuit is described by a
Hamiltonian, which of course depends on the exact circuit configuration. The
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procedure for writing down a2 Hamiltonian for an arbitrary circuit has been de-
scribed in detail in a prior publication[11]. The general form of the Hamiltonian
for the Josephson effectis H; = U .

3. Phase, flux, and charge qubits

A Josephson qubit can be understood as a nonlinear resonator formed from the
Josephson inductance and its junction capacitance. nonlinearity is crucial be-
cause the system has many energy levels, but the operating space of the qubit
must be restricted to only the two lowest states. The system is effectively a
two-state system[12] only if the frequency w;o that drives transitions between the
qubit states 0 «— 1 is different from the frequency wy) for transitions 1 «— 2.
We review here three different ways that these nonlinear resonators can be
made, and which are named as phase, flux, or charge qubits.
The circuit for the phase-qubit circuit is drawn in Fig. 2(a). Its Hamiltonian
is
~ ——c088d — —96, 3.1
2

where C is the capacitance of the tunnel junction. A similar circuit is drawn for
the flux-qubit circuit in Fig. 2(b), and its Hamiltonian is

1 ~ Igdo ~ 1 Do~y
H= Ta Q . cos & + 7L (@ T ) 3.2)
The charge qubit has a Hamiltonian similar to that in Eq. 3.1, and is described
elsewhere in this publication. Here we have explicitly used notation appropriate
for a quantum description, with operators charge 0 and phase difference § that
obey a commutation relationship [3, Q] = 2ei. Note that the phase and flux
qubit Hamiltonians are equivalent for L — oo and I = ®/L, which corresponds
to a current bias created from an inductor with infinite impedance.

The commutation relationship between 3 and Q imply that these quantities
must be described by a wavefunction. The characteristic widths of this wave-
function are controlled by the energy scales of the system, the charging energy of
the junction Ec = ¢2/2C and the Josephson energy E; = Io®o/2m. When the
energy of the junction dominates, E; 3> E¢, then$ can almost be described clas-
sically and the width of its wavefunction i is small (8 - (5) } < 1. In contrast,
the uncertainty in charge is large (@2 (Q) )y > (2e)2.

If the Josephson inductance is constant over the width of the 3 wavefunction,
then a circuit is well described as a L ;-C harmonic oscillator, and the qubit states
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(a) Phase (b) Flux (c) Charge
éZ Qi

Lo <&> large

Fig. 2. Comparison of the phase (a), flux (b), and charge (c) qubits. Top row illustrates the circuits,
with each “X” symbol representing a Josephson juncton. Middle row has a plot of the Hamiltonian
potential (thick line), showing qualitatively different shapes for three qubit types. Ground-state
wavefunction is also indicated (thin line). Key circuit parameters are listed in next row. Lowest
row indicates variations on the basic circuit, as discussed in text. The lowest three energy levels are
illustrated for the phase qubit (dotted lines).

are degenerate and not usable. Usable states are created only when the Josephson
inductance changes over the §-wavefunction.

The most straightforward way for the wavefunction to be affected by the
Josephson nonlinearity is for 8 to have a large width , which occurs when E; ~
Ec. A practical implementation of this circuit is illustrated in Fig 2(c), where a
double-junction Coulomb blockade device is used instead of a single junction to
isolate dissipation from the leads[2, 4]. Because the wavefunction extends over
most of the -cosd Hamiltonian, the transition frequency wjg can differ from wz;
by more than 10 %, creating usable qubit states[13].

Josephson qubits are possible even when E; > Ec, provided that the junction
is biased to take advantage of its strong nonlinearity. A good example is the
phase qubit[6], where typically E; ~ 10*Ec, but which is biased near § <
/2 so that the inductance changes rapidly with § (see Eq.2.3a). Under these
conditions the potential can be accurately described by a cubic potential, with the
barrier height AU — 0as I — Iy. Typically the bias current is adjusted so that
the number of energy levels in the well is ~ 3 — 5, which causes wjg to differ
from w1 by an acceptably large amount ~ 5 %.

Implementing the phase qubit is challenging because a current bias is required
with large impedance. This impedance requirement can be met by biasing the
junction with flux through a superconducting loop with a large loop inductance
L, as discussed previously and drawn in Fig. 2(a). To form multiple stable
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flux states and a cubic potential, the loop inductance L must be chosen such that
L 2 2L ;. We have found that a design with L >~ 4.5L ;¢ is a good choice since
the potential well then contains the desired cubic potential and only one flux state
into which the system can tunnel, simplifying operation.

The flux qubit is designed with L < L ;o and biased in flux so that @) = 7.
Under these conditions the Josephson inductance is negative and is almost can-
celed out by L. The small net negative inductance near 8 = 7 turns positive
away from this value because of the 1/ cos § nonlinearity, so that the final poten-
tial shape is quartic, as shown in Fig. 2(b). An advantage of the flux qubit is a
large net nonlinearity, so that w|o can differ from w;; by over 100 %.

The need to closely tune L with L ¢ has inspired the invention of several
variations to the simple flux-qubit circuit, as illustrated in Fig. 2(b). One method
is to use small area junctions[7] with E; ~ 10Ec, producing a large width
in the 8 wavefunction and relaxing the requirement of close tuning of L with
Ljo. Another method is to make the qubit junction a two-junction SQUID,
whose critical current can then be tuned via a second flux-bias circuit[14, 15].
Larger junctions are then permissible, with E; ~ 10°E¢c to 103E¢. A third
method is to fabricate the loop inductance from two or more larger critical-current
junctions[16]. These junctions are biased with phase less than /2, and thus act
as positive inductors. The advantage to this approach is that junction inductors
are smaller than physical inductors, and fabrication imperfections in the critical
currents of the junctions tend to cancel out and make the tuning of L with L j
easier.

In summary, the major difference between the phase, flux, and charge qubits
is the shape of their nonlinear potentials, which are respectively cubic, quartic,
and cosine. It is impossible at this time to predict which qubit type is best
because their limitations are not precisely known, especially concerning deco-
herence mechanisms and their scaling. However, some general observations can
be made.

First, the flux qubit has the largest nonlinearity. This implies faster logic gates
since suppressing transitions from the qubit states 0 and 1 to state 2 requires
long pulses whose time duration scales as 1/ |w1g — w21][12]. The flux qubit
allows operation times less than ~ 1ns, whereas for the phase qubit 10ns is
more typical. We note, however, that this increase in speed may not be usable.
Generating precise shaped pulses is much more difficult on a 1ns time scale,
and transmitting these short pulses to the qubit with high fidelity will be more
problematic due to reflections or other imperfections in the microwave lines.

Second, the choice between large and small junctions involve tradeoffs. Large
junctions (E; > Ec) require precise tuning of parameters (L/L ;¢ for the flux
qubit) or biases (I /Iy for the phase qubit) to produce the required nonlinearity.
Small junctions (E; ~ E¢) do not require such careful tuning, but become sen-
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sitve to 1/f charge fluctuations because E¢ has relatively larger magnitude.

Along these lines, the coherence of qubits have been compared considering
the effect of low-frequency 1/f fluctuations of the critical current[17]. These
calculations include the known scaling of the fluctuations with junction size and
the sensitivity to parameter fluctuations. It is interesting that the calculated co-
herence times for the flux and phase qubits are similar. With parameters choosen
to give an oscillation frequency of ~ 1 GHz for the flux qubit and ~ 10 GHz for
the phase qubit, the number of coherent logic-gate operations is even approxi-
mately the same.

4. BCS theory and the superconducting state

A more complete understanding of the Josephson effect will require a derivation
of Egs. 2.1aand 2.1b. In order to calculate this microscopically, we will first re-
view the BCS theory of superconductivity[18] using a “pair spin” derivation that
we believe is more physically clear than the standard energy-variational method.
Although the calculation follows closely that of Anderson[19] and Kittel[20], we
have expanded it slightly to describe the physics of the superconducting phase,
as appropriate for understanding Josephson qubits.

In a conventional superconductor, the attractive interaction that produces su-
perconductivity comes from the scattering of electrons and phonons. As illus-
trated in Fig. 3(a), to first order the phonon interaction scatters an electron from
one momentum state to another. When taken to second order (Fig. 3(b)), the
scattering of a virtual phonon produces a net attractive interaction between two
pairs of electrons. The first-order phonon scattering rates are generally small, not
because of the phonon matrix element, but because phase space is small for the
final electron state. This implies that the energy of the second order interaction
can be significant if there are large phase-space factors.

The electron pairs have the largest net interaction if every pair is allowed by
phase space factors to interact with every other pair. This is explicitly created
in the BCS wavefunction by including only pair states (Cooper pairs) with zero
net momentum. Under this assumption and using a second quantized notation
where cZ is the usual creation operator for an electron state of wavevector k, the
most general form for the electronic wavefunction is

W= [ o + veecfct 10y @.1)
k

where u; and vy are real and correspond respectively to the probability amplitude
for a pair state to be empty or filled, and are normalized by u?+ vi = 1. For
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Fig. 3. Feynman diagram of electron-phonon interaction showing (a) first- and (b) second-order
processes.

generality we have included a separate phase factor ¢y for each pair. Because
each pair state is described as a two state system, the wavefunction may also be
described equivalently with a “pair-spin” tensor product

Ui
e

and the Hamiltonian given with Pauli matrices o, oy, and oz.

The kinetic part of the Hamiltonian must give W in the ground state with pairs
occupied only for |k| < k7, where k7 is the Fermi momentum. If we define the
kinetic energy of a single electron, relative to the Fermi energy, as &, then the
kinetic Hamiltonian for the pair state is

Hg = — 3 &0z . 4.3)

The solution of HxW = E;+W gives for the lowest energy, Ei_, the values
v = 1for [k| < kf, and vy = O for |k| > ky, as required. An energy Ex4 —
Er_ = 2|&] is needed for the excitation of pairs above the Fermi energy or the
excitation of holes (removal of pairs) below the Fermi energy.

The potential part of the pair-spin Hamiltonian comes from the second-order
phonon interaction that both creates and destroys a pair, as illustrated in Fig. 3(b).
The Hamiltonian for this interaction is given by

Vv
Hpy=—— Z(kaaxl + oykoyi) 5 4.4
2 ki

and can be checked to correspond to the second-quantization Hamiltonian Ha =
vy CZCikaC—k by using the translation oy — cxc—p + chik and oy —
i(cke—i — cch_k).

We will first understand the solution to the Hamiltonian Hx + H for the phase
variables ¢. This Hamiltonian describes a bath of spins that are all coupled to
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each other in the x-y plane (Hx) and have a distribution of magnetic fields in the
z-direction (Hy). Because Hj is negative, each pair of spins becomes aligned
with each other in the x-y plane, which implies that every spin in the bath has the
same phase ¢. This condition explains why the BCS wavefunction has only one
phase ¢ = ¢ for all Cooper pairs[21]. Because there is no preferred direction
in the x-y plane, the solution to the Hamiltonian is degenerate with respect to
¢ and the wavefunction for ¢ is separable from the rest of the wavefunction.
Normally, this means that ¢ can be treated as a classical variable, as is done for
the conventional understanding of superconductivity and the Josephson effects.
For Josephson qubits, where ¢ must be treated quantum mechanically, then the
behavior of ¢ is described by an external-circuit Hamiltonian, as was done in
Sec. 3.

For a superconducting circuit, where one electrode is biased with a voltage V,
the voltage can be accounted for with a gauge transformation on each electron

state ¢] — !/ JVdtcl  The change in the superconducting state is thus given
by

NN l_[(uk + vkei¢ei(e/h)f thczei(e/h)f\/dtcf_k) |0) 4.5)
k

l_[(uk + vkei[¢+i(2e/h)fth]C;(TCT_k) 0) . (4.6)
k

The change in ¢ can be written equivalently as

a’¢_2€V @)
dt ~ R’ ‘

which leads to the AC Josephson effect.

The solution for u; and v proceeds using the standard method of mean-field
theory, with

\'%
(Ha) = == Y 0wk {oxt) + oy foyi)) (4.8)
k,d
(o) = (ur, ue™) -, (v,bgi«») 49
=2uvcos ¢, 4.10)
{oyi) = 2uvsing . @.11)
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Fig. 4. Bloch sphere solution of the Hamiltonian (ox, oy, 07) ® (Bx, By, B;). The vector B gives
the direction of the positive energy eigenstate.

Using the standard definition of the gap potential, one finds

A=V uu, (4.12a)
H = Hg + (Hp) 4.12b)
- —Z(ka,cryk, o) (Acos, Asing, &) . (4.12¢)

k

This Hamiltonian is equivalent to a spin 1/2 particle in a magnetic field, and
its solution is well known. The energy eigenvalues of HW¥ = E;4 W are given
by the total length of the field vector,

Ere = +(A2+ D)2, (4.13)

and the directions of the Bloch vectors describing the Ey+ and E_ eigenstates
are respectively parallel and antiparallel to the direction of the field vector, as
illustrated in Fig. 4. The ground state solution Wy _ is given by

_ 1 &k
=5 ( + Ek) 4.14)
Mo &
v = 5 (1 Ek) , (4.15)
=9, (4.16)

with the last equation required for consistency. The excited state Wy is similarly
described, but with u; and vy interchanged and ¢ — ¢ + 7.
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At temperature 7 = 0 the energy gap A may be solved by inserting the solu-
tions for uy and vy into Eq. 4.12a

A
szz[:—_z(A2+gk2)l/2' (4.17)

Converting to an integral by defining a density of states Ny at the Fermi energy,
and introducing a cutoff of the interaction V at the Debye energy 6p, one finds
the standard BCS result,

A = 20pe” /MY (4.18)

Two eigenstates Ex_ and E; have been determined for the pair Hamiltonian.
Two additional “quasiparticle” eigenstates must exist, which clearly have to be
single-particle states. These states may be solved for using diagonalization tech-
niques, giving

Yo = ¢ 0), (4.192)
Yy o= 0. (4.19b)

Fortunately, these states may be easily checked by inspection. The kinetic part
of the Hamiltonian gives Hg W01 = O since Wyg | corresponds to the creation
of an electron and a hole, and the electron-pair and hole-pair states have opposite
kinetic energy. The potential part of the energy also gives (Ha) Wio,1 = O since
the interaction Hamiltonian scatters pair states. Thus the eigenenergies of g |
are zero, and these states have an energy E; = | Ex—| above the ground state.

The quasiparticle operators that take the ground-state wavefunction to the ex-
cited states are

kao = ukc,:r - vke’i¢c_k y 4.20)
y,fl = uch_k + e ey, 4.21)

which can be easily checked to give
Veo(uk +vee®cfct )10y = ¢[10) (4.22)
Ve + we'®clet y10) = e o) . (4.23)

A summary of these results is illustrated in Fig. 5, where we show the energy
levels, wavefunctions, and operators for transitions between the four states. The
quasiparticle raising and lowering operators ykTO, Vle’ Yio» and ¥, produce tran-
sitions between the states and have orthogonality relationships similar to those of
the electron operators.

502 J. M. Martinis

1¢++
W =, —ueccl

ey -y I
kl k0 E

=

Yozt =ql0) ¥z =<0
e Vi
k\ k/ Ek
Y, =, +ve’c,

Fig. 5. Energy-level diagram for the ground-pair state (solid line), two quasiparticle states (dashed
lines), and the excited-pair state (short dashed line).

It is interesting to note that the ground and excited pair states are connected by
the two quasiparticle operators e %y, y/ Wy_ = W;. Because the value uv;
changes sign between W, _ and Wy, and is zero for Wy |, the gap equation 4.12a
including the effect of quasiparticles is proportional to (1 — ykTOka — )’1:(1 Yir)-
Along with the energy levels, these results imply that the two types of quasipar-
ticles are independent excitations.

5. The Josephson effect, derived from perturbation theory

We will now calculate the quasiparticle and Josephson current for a tunnel junc-
tion using first and second order perturbation theory, respectively. We note that
our prior calculations have not been concerned with electrical transport. In fact,
the electron operators describing the superconducting state have not been influ-
enced by charge, and thus they correspond to the occupation of an effectively
neutral state. Because a tunneling event involves a real transfer of an electron,
charge must now be accounted for properly. We will continue to use electron
operators for describing the states, but will keep track of the charge transfer sep-
arately.

When an electron tunnels through the barrier, an electron and hole state is
created on the opposite (left and right) side of the barrier. The tunneling Hamil-
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tonian for this process can be written as

— — - <«
Hr = Hry+Hr-+Hrs+Hro (5.12)
t t t
= Z (’LRCLCR +1_p_RrC_C g H1[RCLCR
L.R
+tiL_Rc1Lc_R) , (5.1b)

where ¢, j is the tunneling matrix element, and the L and R indices refer respec-
tively to momentum states k on the left and right superconductor. The first two
terms ﬁr+ and _ﬁT_ correspond to the tunneling of one electron from left to
the right, whereas ;I—T+ and H 7_ are for tunneling to the left. The Hamiltonian
is explicitly broken up into ﬁr+ and 71)7_ to account for the different electron
operators CZ andc’ « for positive and negative momentum.

The electron operators must first be expressed in terms of the quasiparticle
operators y because these produce transitions between eigenstates of the super-
conducting Hamiltonian. Equations 4.20, 4.21, and their adjoints are used to
solve for the four electron operators

- .

ok = wkvpo + we'ty), ook = wvn — vke"byk%
_; + i

C,t = ukaTO + e Py Cik =wury, — ke 0 -

5.2)

Substituting Egs. 5.2 into 5.1b, one sees that all four terms of the Hamiltonian
have operators y ' that produce quasiparticles. We calculate here to first order
the quasiparticle current from L to R given by ﬁm— + ﬁr_. The Feynman
diagrams (a) and (b) in Fig. 6 respectively describe the tunneling Hamiltonian
for the H 74 and 71)7, terms. In this diagram a solid line represents a Cooper
pair state in the ground state, whereas a quasiparticle state is given by a dashed
line. Only one pair participates in the tunneling interaction, so only one of the
three solid lines is converted to a dashed line. The line of triangles represents the
tunneling event and is labeled with its corresponding Hr Hamiltonian, with the
direction of the triangles indicating the direction of the electron tunneling. The
cz operators, acting on the L or R lead, is rewritten in terms of the y operators
and placed above or below the vertices. Since only " operators give a nonzero
term when acting on the ground state, the effect of the interaction is to produce
final states W5 with total energy Er + E;, and with amplitudes given at the
right of the figure.

The two final states in Fig 6(a) and (b) are orthogonal, as well as states involv-
ing different values of L and R. The total current is calculated as an incoherent

504 J. M. Martinis

~igy

+ +
Cp =UgYrotVi€ ™V
CVRA—————————— RN L
N & Ey
H His
T+ 015 E
\PL _____L_.__ ig, +\PL
- o VeV
CL=u Yy tvieyy,
+ + —igg
C g =Ug¥ri ~Vi€ " Vro
(b) ‘P‘R___??ET_“ MR}/;;lle
+
- S, R
H 0
T- ) i
\PL :___E;L___ ig o L
——--———— —————————ayJ4 7L0\F—

_ (@) 0t
C =U Yy —Vvie™ Yy

. . . . . - - . .
Fig. 6. First-order Feynmann diagrams for interaction H 74 (a) and H7_ (b). Solid lines are
Cooper-pair states, dashed lines are quasiparticle excitations, and arrow-lines represents tunneling
interaction. Electron operators arising from interaction are displayed next to vertices.

sum over all possible final quasiparticle states, under the condition that the to-
tal quasiparticle energy for the final state is equal to the energy gained by the
tunneling of the electron

Ep+E;p =eV. (5.3)

The total current from L to R is given by e multiplied by the transition rate

N 2 (ER+EL=eV) N N )
o= e 3 [(wi(wFEre+ Eroef) et G
L.,R
(ER+Ep=eV)
2me ) )
= Th Z [lfue| +|LL_RI](uRvL)2 (5.4b)
L.R
00 (o]
4re ) )
= |t NogNo | vidéL | wkdérd(eV —EL - Ep) (5.4c)
L Yo

where in the last equation we have expressed the conservation of energy with
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a Dirac é-function, and have assumed matrix elements || of constant strength.
Because E (&) = E(—&) and uy(&x) = vi(—&k), one finds

o
— dre
Ty = 7 NoNo f W +ud)dEL
o0
/(ui +v%)dEg 8(eV — Ef — Eg)
0
o o0
dre
= — |t|> NogNor. | d&1 | dég 8(eV — EL — ER) . (5.5a)
0 0

This result is equivalent to the standard “semiconductor model” of the quasi-
particle current, which predicts no current for V < 2A /e, a rapid rise of current
at 2A /e, and then a current proportional to V at large voltages. Note that Eq.
5.4c has a sum over the occupation probability vi of the pair state and the occu-

pation probability u% of a hole-pair state, as is expected given the operators ¢ Lc;re
in the tunneling Hamiltonian. The final result of Eq. 5.5a does not have these
factors because the occupation probability is unity when summed over the £&
states.

It is convenient to express the tunneling matrix element in terms of the normal-
state resistance of the junction, obtained by setting A = 0, with the equation

_—
YRy = IV (5.62)
: 00
= 22112 NorNow / dt, / dr eV — &L —ER)/V (5.6b)
0
_ Y Moo (5.6¢)

We now calculate the tunneling current with second-order perturbation theory.
The tunneling Hamiltonian, taken to second order, gives

HY ZHT -Hr (5.7)

where ¢; is the energy of the intermediate state ;. Because the terms in Hr
have both " and y operators, the second-order Hamiltonian gives a nonzero
expectation value for the ground state. This is unlike the first-order theory, which
produces current only through the real creation of quasiparticles.
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Because Hr has terms that transfer charge in both directions, Hy Hy will
produce terms which transfer two electrons to the right, two to the left, and with
no net transfer. With no transfer, a calculation of the second-order energy gives
a constant value, which has no physical effect. We first calculate terms for
transfer to the right from (71> T+ + _ITI)T_)(FI) T+ + ﬁr—), which gives nonzero
expectation values only for H T+7-I>T_ + FI)T_ H r4. The Feynman diagrams
for these two terms are given in Fig. 7(a) and (b), where we have displayed only
the amplitudes from the nonzero operators. The expectation value of these two
Hamiltonian terms is given by

— _
<H;)> = = (W) (W] oge#euy)
L.R
t oyttt + VAN t
N YROYLA\YROYLIMLR - L—R T YR1IVLOYRIYLO!—L—RILR
Er+E;
x (1 g, €91) wf)}wf) (5.82)
: 1
= —2|t|2e’(¢L_¢R)Z(vRuR)(uLvL)—— (5.8b)
LR Er+ Ep
7 A A 1
=—2te’8NN/d /d —  (58¢
14 0rRNoL &r ELERELER+EL (5.8¢)
—00 —00
hA T 1
15
dé 40 ————— 5.8d
2yre2RN / k / L cosh6z + cosh @y, (5-.8d)
—00
RA is (TT\2
= SR (5) , (5.8¢)

where we have used 17, = t_; _, and assumed the same gap A for both su-
perconductors. A similar calculation for transfer to the left gives the complex
conjugate of Eq. 5.8e. The sum of these two energies gives the Josephson energy
Uy, and using Eq. 2.5, the Josephson current /;,

U LRE A coss (5.9)
= ———Acosd, .
/ 8 Ry
T A
Ij] = ——sind, 5.10
J 3 eRy sin (5.10)

where Ry = h/e” is the resistance quantum. Equation 5.10 is the standard
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Ambegaokar-Baratoff formula[22] for the Josephson current at zero tempera-
ture.
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Fig. 7. Second-order Feynman diagrams for the transfer of two electrons across the junction. Only
nonzero operators are displayed next to vertices.

The Josephson current is a dissipationless current because it arises from a new
ground state of the two superconductors produced by the tunneling interaction.
This behavior is in contrast with quasiparticle tunneling, which is dissipative
because it produces excitations. It is perhaps surprising that a new ground state
can produce charge transfer through the junction. This is possible only because
the virtual quasiparticle excitations are both electrons and holes: the electron-part
tunnels first through the junction, then the hole-part tunnels back. Only states of
energy A around the Fermi energy are both electron- and hole-like, as weighted
by the (vyug) (1, v, ) term in the integral.

The form of the Josephson Hamiltonian can be understood readily by noting
that the second-order Hamiltonian,

- =
HriHro ~ 112 cpe_jcpelp (5.11)
L,R
It |?
= TZ(axwaayLoyR), (5.12)
L.,R

corresponds to the pair-scattering Hamiltonian of Eq. 4.4. Comparing with the
gap-equation solution, one expects U, ~ |1[%> A cos 8, where the cos § term arises
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from the spin-spin interaction in the x-y plane.

We would like to make a final comment on a similarity between the BCS
theory and the Josephson effect. In both of these derivations we see that a dissi-
pative process that is described in first-order perturbation theory, such as phonon
scattering or quasiparticle tunneling, produces in second order a new collective
superfluid behavior. This collective behavior emerges from a virtual excitation
of the dissipative process. Dissipation is normally considered undesirable, but
by designing systems to maximize dissipation, it may be possible to discover new
quantum collective behavior.

With this understanding of the Josephson effect and quasiparticle tunneling,
how accurate is the description of the Josephson junction with the Hamiltonian
corresponding to Eq. 5.9? There are several issues that need to be considered.

First, quasiparticle tunneling is a dissipative mechanism that produces deco-
herence. Although it is predicted to be absent for V < 2A /e, measurements of
real junctions show a small subgap current. This current is understood to arise
from multiple Andreev reflections, which are described as higher-order tunnel-
ing processes. We thus need a description of the tunnel junction that easily pre-
dicts these processes for arbitrary tunneling matrix elements. This is especially
needed as real tunnel junctions do not have constant matrix elements, as assumed
above. Additionally, we would like to know whether a small number of major
imperfections, such as “pinhole” defects, will strongly degrade the coherence of
the qubit.

Second, quasiparticle tunneling has been predicted for an arbitrary DC volt-
age across the junction. However, the qubit state has (V) = 0, but may excite
quasiparticles with AC voltage fluctuations. This situation is difficult to calcu-
late with perturbation theory.  In addition, is it valid to estimate decoherence
from quasiparticles at zero voltage simply from the junction resistance at subgap
voltages?

Third, how will the Josephson effect and the qubit Hamiltonian be modified
under this more realistic description of the tunnel junction?

All of these questions and difficulties arise because perturbation theory has
been used to describe the ground state of the Josephson junction. The BCS the-
ory gives basis states that best describe quasiparticle tunneling for large voltages,
notfor V. — 0. A theory is needed that solves for the Josephson effect exactly,
with this solution then providing the basis states for understanding quasiparticle
tunneling around V = 0. This goal is fulfilled by the theory of quasiparticle
bound states, which we will describe next.
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Fig. 8. Plot of potential vs. coordinate x with a positive delta-function tunnel barrier Vpé(x). Scat-
tering of plane wave states is shown in (a), whereas (b) is a plot of the bound-state wavefunction.
The delta-function barrier is negative in (b), as required for producing a bound state.

6. The Josephson effect, derived from quasiparticle bound states

We begin our derivation of an exact solution for the Josephson effect with an ex-
tremely powerful idea from mesoscopic physics: electrical transport can be cal-
culated under very general conditions by summing the current from a number of
independent “‘conduction channels”, with the transport physics of each conduc-
tion channel determined only by its channel transmission probability 7;[23, 24].
For a Josephson junction, the total junction current /; can be written as a sum
over all channels i

Ij:ZIj(Ti), (6-1)

where (1) is the current for a single channel of transmission t, which may
be solved for theoretically. For a tunnel junction, the number of channels is
estimated as the junction area divided by the channel area (A / 2)2, where A ris
the Fermi wavelength of the electrons. Of course, the difficulty of determining
the distribution of the channel transmissions still remains. This often may be
estimated from transport properties, and under some situations can be predicted
from theory[25, 26, 27].

Because transport physics is determined only by scattering parameterized by
7, we may make two simplifying assumptions: the transport can be solved for us-
ing plane waves, and the scattering from the tunnel junction can be described by
a delta function. The general theory has thus been transformed into the problem
of one-dimensional scattering from a delta function, and an exact solution can be
found by using a simple and clear physical picture.

Central to understanding the Josephson effect will be the quasiparticle bound
state. To understand how to calculate a bound state[28, 29], we will first consider
anormal-metal tunnel junction and with a 8-function barrier Vs (x), as illustrated
in Fig. 8. For an electron of mass m and wavevector k, the wavefunctions on the
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left and right side of the barrier are

U, = Ae* + Be ¥ (6.2)
Y = Cétr, (6.3)

where A, B, and C are respectively the incident, reflected, and transmitted elec-
tron amplitudes. From the continuity equations

v, = Vg 6.4)
dvy; dVr 2mVj
= —_ \IJ .
dx dx R K 6.5)

evaluated at x = 0, the amplitudes are related by

A+B = C (6.6)
2mV,

ikA —ikB = ikC — 22 °c. ©6.7)

The transmission amplitude and the probability are
Cc 1
- = , 6.8
A 1+in 68)
cl? 1
= = = ——, 6.9
‘ ‘A 1472 ©9)

where n = mVp/h*k. The bound state can be determined by finding the pole
in the transmission amplitude. A pole describes how a state of finite ampli-
tude may be formed around the scattering site with zero amplitude of the in-
cident wavefunction, which is the definition of a bound state. The pole at

n = i gives k, = —imVy/h?, and a wavefunction around the scattering site
2 . . - .

Wp = Ce™Yo/RDx  This describes a bound state only when V; is negative, as

expected.

A superconducting tunnel junction will also have bound states of quasiparti-
cles excitations. These bound states describe the Josephson effect since virtual
quasiparticle tunneling was necessary for the perturbation calculation in the last
section. The Bogoliubov-deGennes equations describe the spatial wavefunc-
tions, whose eigenstates are given by the solution of the Hamiltonian

. h2 .
Ho* e = (:tk o+ on) ptex (6.10)
m

where g*e** are the slowly varying spatial amplitudes of the exact wavefunction
pFe*etikix . Asillustrated in Fig. 9, the -k s« term corresponds to the kinetic
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Fig. 9. Plot of quasiparticle energies E, verses momentum « near the +k ¢ Fermi surfaces. The
two-component eigenfunctions are also displayed for each of the four energy bands. Also indicated
are the quasiparticle states A-E used for the bound-state calculation.

energy at the =k y Fermi surfaces using the approximation (k +«)%/2 =~ const.+
ks . As expected for a spin-type Hamiltonian, the two eigenvalues are

E.=+@E2+ A2, (6.11)

where & = h%k ric/m is the kinetic energy of the quasiparticle referred to the
Fermi energy. The eigenvectors are also displayed in Fig. 9, where u, and
v are given by Eqs. 4.14 and 4.15. Because the two energy bands represent
quasiparticle excitations, the lower band is normally filled and its excitations
correspond to the creation of hole states.

We can solve for the quasiparticle bound states by first writing down the scat-
tering wavefunctions in the left and right superconducting electrodes. An in-
coming quasiparticle state, point A in Fig. 9, is reflected off the tunnel barrier to
states B and C and is transmitted to states D and E [30]. The wavefunctions are
then given by

_ u ikx v ikx u —iKx

v, = A(vei¢L>e + B(uei¢L>e + C(vei‘f’L)e (6.12)
v —iKkx u iKkx

D(uei ¢R)e + E(Uel. ¢R)e , (6.13)

where we have used the relations v = v, = u_, and 4 = u, = v_,, and we have
included the phases ¢, and ¢ of the two states. The continuity conditions Egs.
6.4 and 6.5, solved for both the components of the spin wavefunction, gives the
matrix equation

L 73
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Fig. 10. Plot of quasiparticle bound-state energies E;_ and E ;. vs. the phase difference & across
the junction, for three values of tunneling transmission t. Quasiparticles are produced by vertical
transitions from the E;_ to E ;. band. As indicated by the arrow, the energy gap E;4 — Ej_ is
always greater than V2A ats = /2.

u -V —u v u B
v —u —v ue=s ve i C
A ul " f-v u —v(l —i2p) u(l+1i2n) D (6.14)
v —u v —ue (1 —i2n) wve (1 +i2p) E
The scattering amplitudes for B-E have poles given by the solution of
@+ vHA + 7 = 2uv)?(H* +cosd) =0. (6.15)

Using the relations u? + v2> = 1, E; = E; = A/2uv,and t = 1/(1 + 5?), the
energies of the quasiparticle bound states are

Eji = +A[l — tsin(5/2)]"/%. (6.16)

Because these two states have energies less than the gap energy A, they are ener-
getically “bound” to the junction and thus have wavefunctions that are localized
around the junction.

The dependence of the quasiparticle bound-state energies on junction phase is
plotted in Fig. 10 for several values of 7. The ground state is normally filled,
similar to the filling of quasiparticle states of negative energy. The energy E;_
corresponds to the Josephson energy, as can be checked in the limit t — 0 to
give

At At

EJ_:—A+T—TCOS(S. (617)
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This result is equivalent to Eq. 5.9 after noting that the normal-state conductance
of a single channelis 1/Ry = 27/Rg.
The current of each bound state is given by the derivative of its energy
2r 0E 4

e ="
1= 9y 85

(6.18)

in accord with Eq. 2.5. Since the curvature of the upper band is opposite to that
of the lower band, the currents of the two bands have opposite sign I, = —1;_.
For level populations of the two states given by f, the average Josephson current
is (Iy) = I;_(f- — f1+). For a thermal population, fi are given by Fermi
distributions, and the Josephson current in the tunnel junction limit gives the
expected Ambegaokar-Baratoff result

n A(T) . 1 1
(I = 2 eRy siné - (e—A/kT T 1 eA/AT 1 1) (6.19)
AT
- TA )tanh(A /2kT) sin§ . (6.20)
2 eRy

7. Generation of quasiparticles from nonadiabatic transitions

In this description of the Josephson junction, the Josephson effect arises from a
quasiparticle bound state at the junction. Two bound states exist and have ener-
gies E ;4 and E;_, with the Josephson current from the excited state being of op-
posite sign from that of the ground state. We will discuss here the small-voltage
limit[31, 32], which can be fully understood within a semiclassical picture by
considering that a linear increase in § produces nonadiabatic transitions between
the two states.

The junction creates “free quasiparticles”, those with £ > A, via a two-step
process. First, a transition is made from the ground to the excited bound state.
This typically occurs because a voltage is placed across the junction, and the
linear change of § causes the ground state not to adiabatically stay in that state.
For a high-transmission channel, the transition is usually made around § ~ r,
where the energy difference between the states is the lowest and the band bending
is the highest. Because this excited state initially has energy less than A, the state
remains bound until the phase changes to 2 and the energy of the quasiparticle
is large enough to become unbound and diffuse away from the junction. The
quasiparticle generation rate is thus governed by dé/d¢ and will increase as V
increases.
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Fig. 11. Plot of semiclassical solutions for the tunneling through a barrier (a) and tunneling through
an energy gap (b). Imaginary solutions to k and § are used to calculate the tunneling rates.

The quasiparticle transition rate can be predicted using a simple semi-classical
method. We will first review WKB tunneling in order to later generalize this
calculation to energy tunnelling. In Fig. 11(a), we plot a cubic potential V (x)
versus x and its solution k2 = 2m[E — V{x)l/ h2. The solution for k is real or
imaginary depending on whether E is greater or less than V (x). A semi-classical
description of the system is the particle oscillating in the well, as described by
the loop in the solution of Re{k}. A solution in the imaginary part of k connects
a turning point on this loop, labeled A, with the turning point of the free-running
solution, labeled B. The probability of tunneling each time the trajectory passes
point A is given by the standard WKB integral of the imaginary action

W = exp[-25] 7.1
S = (l/ﬁ)’fdxlmp' (71.2)
XB
- / demk'. (13)
XA

The transition rate for a nonadiabatic change in a state may be calculated in a
similar fashion. In Fig. 11(b) we plot the solution of Eq. 6.16 for § versus E. In
the “forbidden” region of energy |E| < A+/1 — 7, the solution of § has an imag-
inary component. As the bias of the system changes and the system trajectory
moves past point A, then this state can tunnel to point B via the connecting path
in the imaginary part of 5. The probability for this event is given by Eq. 7.1 with
S given by the integral of the imaginary action

S = (l/ﬁ)detimag, (7.4)
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Fig. 12. (a) Plot of average junction current (1 j) versus inverse DC voltage V for transmission co-
efficients t = 0.8, 0.5, 0.2, and 0.01 (from Ref. [32] ). Solid lines are from exact calculation, and
dashed lines are from predictons of Egs. 7.8 and 7.6. The time dependence of the Josephson current
1; is plotted for the ground state (b) and for a transition (c), where the insets show the trajectory of
the bound states as E j vs. 8.

where we define an imaginary time by

Imé

limag = ‘m - (75)

Rewriting Eq. 6.16 as (E/A)? = 1—1(1—cos8)/2 and using d8/dt = 2e/h)V,
one finds the action is given by the integral

N 2
S = 2oV _mde Im [— arccos [1 + (e° — 1)2/1]} (7.6)
A 1-1)/2 =1
~ v x { In(2/1) (rt = 0)

(1—1)[In@2/7) + /T(r/2—1n2)] , (interp.)

where the last interpolation formula approximates well a numerical solution of
Eq. 7.6. The limiting expression for T — 1 gives the standard Landau-Zener
formula appropriate for a two-state system. In the tunnel-junction limit 7 — 0
one finds

W = (r/2)*8/¢V (1.7)

For the case of a constant DC bias voltage V, the total junction current (/;)
may be calculated with this transition rate and an attempt rate I' = (2e/h)V
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given by the frequency at which § passes 7/2. Using Eq. 7.6 and setting the
power of quasiparticle generation 2AT"W to the electrical power (I j) V., one finds

(1<)—2ﬁéw 7.8
'Y R 78)

This prediction is plotted in Fig. 12(a) and shows very good agreement with the
results of exact calculations[32]. Only the steps in voltage are not reproduced,
which are understood as arising from the quantization of energy eV from mul-
tiple Andreev reflection of the quasiparticles. The steps are not expected to be
reproduced by the semiclassical theory since this theory is an expansion around
small voltages, or equivalently, large quantization numbers.

The junction current may also be determined from the energies of the two
bound states. For a constant voltage across the junction, we use Eq. 2.5 to
calculate the charge transferred across the junction after a phase change of 27

2 /(d8)d1)
Qj = / det 1.9)
0
2 (28l gy
= 4 (7.10)
&0 Jo s
U;Q2m)—-U; (0
_ [Uy( N)V 7(0)] ’ (7.11)

which gives the expected result that the change of energy equals Q' ; V. When the
junction remains in the ground state, the energy is constant U; 27) — U;(0) =0
and no net charge flows through the junction. Net charge is transferred, however,
after a transition. The charge transfer 2A /V multiplied by the transition rate
gives an average current Q ;T'W that is equivalent to Eq. 7.8.

Equation 6.18 may be used to calculate the time dependence of the Josephson
current, as illustrated in Fig. 12(b) and (c¢). When the system remains in the
ground state (b), the junction current is sinusoidal and averages to zero. For
the case of a transition (c), the current before the transition is the same, but the
Josephson current remains positive after the transition (see Eq. 5.4 of Ref. [32]).
The transition itself also produces charge transfer from multiple-Andreev reflec-
tions(MAR) [31, 33]

OMmar = 2A(1 — )2V . (7.12)

This result is perhaps surprising - the junction current at finite voltage arises from
transfer of charge Qmar and a change in the Josephson current. The relative
contribution of these two currents is determined by the relative size of the gap
in the bound states. For ¢ — 1, all of the junction current is produced by
Josephson current, whereas for r — 0 (tunnel junctions) the current comes from

OMAR-
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For small voltages, the transition event must transfer a large amount of charge
OMAR in order to overcome the energy gap. In comparing this semi-classical
theory with the exact MAR theory, QmaRr/e has an integer value and represents
the order of the MAR process and the number of electrons that are transferred
in the transition. This description is consistent with Eq. 7.7 describing the
transition probability for an n-th order MAR process, where n = 2A /eV, and
7/2 represents the matrix element for each order.

From this example it is clearly incorrect to picture the quasiparticle and
Josephson current as separate entities, as suggested by the calculations of per-
turbation theory. To do so ignores the fact that quasiparticle tunneling, arising
from a transition between the bound states, also changes the Josephson contribu-
tion to the current from § = x to 2.

8. Quasiparticle bound states and qubit coherence

The quasiparticle bound-state theory can be used to predict both the Josephson
and quasiparticle current in the zero-voltage state, as appropriate for qubits. In
this theory an excitation from the E;_ bound state to the E, state is clearly
deleterious as it will change the Josephson current, fluctuating the qubit fre-
quency and producing decoherence in the phase of the qubit state. For an exci-
tation in one channel, the fractional change in the Josephson current is ~ 1/ Ny,
where N, is the number of conduction channels. The subgap current-voltage
characteristics can be used to estimate Ncp, which gives an areal density of
~ 10*/um? [10, 34]. For a charge qubit with junction area 10~2um?, the
qubit frequency changes fractionally by ~ 1/N, ~ 1072 for a single excitation,
and gives strong decoherence. Although the phase qubit has a smaller change
(1/Na)Io/4(Ip — I) ~ 2 x 1072, the excitation of even a single bound state is
clearly unwanted.

Fortunately, these quasiparticle bound states should not be excited in tunnel
junctions by the dynamical behavior of the qubit. The E;_ to E,, transition
is energetically forbidden because the energy of the qubit states are typically
choosen to be much less than 2A. Thus, the energy gap of the superconductor
protects the qubit from quasiparticle decoherence.

If a junction has “pinhole” defects, where a few channels have t —> 1, then
the energy gap will shrink to zero at § = 7. However, only the flux qubit will be
sensitive to quasiparticles produced at these defects since it operates near § = 7.
In contrast, the phase qubit always retains an energy gap of at least +/2A around
its operating point § = /2 (see arrow in Fig. 10). We note this idea implies
that a phase qubit can even be constructed from a microbridge junction, which
has some channels[26] with 7 = 1. Although the phase qubit is completely
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insensitive to pinhole defects, this advantage is probably unimportant because
Al-based tunnel junctions have oxide barriers of good quality.

Pinhole defects also change the Josephson potential away from the -cosé
form. This modification is typically unimportant because the deviation is smooth
and can be accounted for by a small effective change in the critical current.

The concept that the energy gap A protects the junction from quasiparticle
transitions suggests that superconductors with nonuniform gaps may not be suit-
able for qubits. Besides the obvious problem of conduction channels with zero
gap, channels with a reduced gap may cause stray quasiparticles to be trapped at
the junction. The high-7, superconductors, with the gap suppressed to zero at
certain crystal angles, are an obvious undesirable candidate. However, even Nb
could be problematic since it has several oxides that have reduced or even zero
gap. Nb based tri-layers may also be undesirable since the thin Al layer near
the junction slightly reduces the gap around the junction. In contrast, Al may
not have this difficulty since its gap increases with the incorporation of oxygen
or other scattering defects. It is possible that these ideas explain why Nb-based
qubits do not have coherence times as long as Al qubits[6, 10].

9. Summary

In summary, Josephson qubits are nonlinear resonators whose critical element is
the nonlinear inductance of the Josephson junction. The three types of super-
conducting qubits, phase, flux, and charge, use this nonlinearity differently and
produce qubit states from a cubic, quartic, and cosine potential, respectively.

To understand the origin and properties of the Josephson effect, we have first
reviewed the BCS theory of superconductivity. The superconducting phase was
explicitly shown to be a macroscopic property of the superconductor, whose clas-
sical and quantum behavior is determined by the external electrical circuit. After
a review of quasiparticle and Josephson tunneling, we argued that a proper mi-
croscopic understanding of the junction could arise only from an exact solution
of the Josephson effect.

This exact solution was derived by use of mesoscopic theory and quasiparticle
bound states, where we showed that Josephson and quasiparticle tunneling can be
understood from the energy of the bound states and their transitions, respectively.
A semiclassical theory was used to calculate the transition rate for a finite DC
voltage, with the predictions matching well that obtained from exact methods.

This picture of the Josephson junction allows a proper understanding of the
Josephson qubit state. We argue that the gap of the superconductor strongly pro-
tects the junction from quasiparticle tunneling and its decoherence. We caution
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that an improper choice of materials might give decoherence from quasiparticles
that are trapped at sites near the junction.

We believe a key to future success is understanding and improving this re-
markable nonlinearity of the Josephson inductance. We hope that the picture
given here of the Josephson effect will help researchers in their quest to make
better superconducting qubits.
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1. Introduction

The present chapter is devoted to a particular type of electrical circuit that has
been used to develop solid state quantum bit prototypes. These circuits being
superconducting and involving tunneling of Cooper pairs between two super-
conducting electrodes, they belong to the family of Josephson qubits previously
introduced in this book [1]. They are all based on the same simple device, the
Cooper pair box (CPB), and are all driven by a gate electrode coupled to the
charge of a small electrode. For that reason, they are often considered as form-
ing the so-called “charge qubits” sub-family, although they essentially share the
same physics with other Josephson qubits [2, 3]: their quantum state can be eas-
ily manipulated, whereas reading this state out with a high efficiency is a difficult
task. Moreover, preserving their quantum coherence is a challenge (even at ultra
low temperature) due to their “macroscopic” character.

This chapter is organized in six sections. After this introduction, the second
section presents the Cooper pair box device in its basic version and in its im-
proved version: the split CPB. The energy spectrum is derived as a function of
the external parameters controlling the Hamiltonian and the physical properties
of the corresponding eigenstates are pointed out. In the third section, we show
how the two lowest energy eigenstates form a qubit, how this qubit can be ma-
nipulated with DC voltage pulses or resonant microwave pulses, and how it can
be measured following various strategies. Three experiments that have demon-
strated coherent control of the CPB state are also presented. Then, in section 4,
we present a very simple approach to decoherence in CPBs. Considering a par-
ticular CPB device (the Quantronium) as an example, we list its different possible
decoherence sources and we calculate the different physical quantities that char-
acterize how coherence of its quantum state is lost. From these considerations,
we infer design rules for Josephson qubits. Then, we present different exper-
iments that have been used to measure the effective coherence time of a real
device. Finally, we address in section 5 the problem of making a 2-qubit-gate
with two capacitively coupled CPBs.
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2. The Cooper pair box

2.1. The basic Cooper pair box circuit

Gate Gate Supercon-  Superconducting
Voltage  Electrode ducting Reservoir
Source |5|
‘L Tunnel Junction
E;C
Cg J,

Fig. 1. The basic Cooper pair box. Top: Schematic representation of the Cooper pair box showing
the superconducting island and reservoir, the Josephson junction with energy E ; and capacitance
Cy, the gate, and the voltage source Vg. Bottom: Corresponding electrical schematic drawing.

The basic Cooper pair box (CPB) is the simplest device which combines
Josephson [4] and Coulomb blockade effects [S]. It is a simplified version of
a Josephson device proposed in 1987 [6], and consists [7] of a small BCS su-
perconducting electrode, called the island, connected to a BCS superconducting
reservoir by a Josephson junction with capacitance C; and Josephson energy E ;.
The island can be biased by a voltage source V in series with a gate capacitance
C; (see Fig. 1). In addition to E, the box has a second characteristic energy, the
Coulomb energy E¢ of a single Cooper Pair in excess in the island, with respect
to electrical neutrality:

_ Qe)?
T 2Cs

fo 2.1)
where Cx = C; 4+ Cy is the total capacitance of the island and e the electron
charge. CPBs fabricated by conventional electron beam lithography having a
capacitance Cy, in the fF range (typical size of the junctions is 100nm x 100nm),
Ec is typically of order of a few kg K (kp is the Boltzmann constant). When the
thermal energy kg T is reduced much below the BCS superconducting energy gap
A of the electrodes, and when E¢c < 4A , all the electrons in the island and in
the reservoirs are paired [8]. The Cooper pairs can tunnel through the Josephson
junction and the only remaining degree of freedom of the system is the integer
number N of Cooper pairs in excess or deficit on the island. Due to tunneling, N
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fluctuates quantum mechanically and has to be treated as an operator N, whose
eigenstates |N),. (index ¢ stands for ”pure charge” ) obey

NIN),=NN)., NeZ

and form a complete basis for the quantum states of the box.

Introducing the operator @conjugated to N by the dimensionless relationship
[5, N] = i, one defines the variable 8 € [0, 27 [, which is the phase of the Cooper
pair condensate in the island. From the conjugation relationship, one deduces the
effect of the operators exp(if) and exp(—if) on charge states:

exp(£if) IN), = N+ 1),.. (2.2)

The Hamiltonian of the CPB can now be expressed as a function of the N and/or
0 operators.

2.2. Hamiltonian and energy spectrum

The Hamiltonian of the whole CPB circuit (including its voltage source) is writ-
ten:

H(Ng) = Hy + H) = Ec(N— Ny)* — Ejcosh , 2.3)

where the first term corresponds to the electrostatic energy of the circuit, N, =
C,Vy/(2e) being the reduced gate charge, and where the second term accounts
for the energy cost of a phase difference 6 across the Josephson junction and is
responsible for the tunneling of Cooper pairs. In order to find the eigenenergies
and the corresponding eigenstates of the system, (2.3) is rewritten in a form in-
volving only N or only 6. Using (2.2), one finds the Hamiltonian in the charge
representation,

—~ E
H=Zﬂ&m—wfmumfufmnm+m+m+mmm}
NeZ
(2.4)

The energy spectrum associated to this Hamiltonian is discrete and periodic in
N with period 1. We call |k) the energy eigenstates and Ej their associated
energies sorted in increasing order, starting from & = 0 for the ground state:

H k) = Ex k), k € N. 2.5)

For a given Ng, the lowest energy eigenstates can be found in the charge repre-
sentation by truncating the pure charge state basis and by diagonalizing a finite
version of the matrix that corresponds to (2.4).
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Fig. 2. Top: Energy levels of a Cooper pair box, normalized by the Cooper pair Coulomb energy
E¢, as a function of the gate charge bias Ny, and for E;/E ratios equal to 0.1 (left) and 1 (right).
Bottom: Corresponding expectation values of the dimensionless box charges (N), for the energy
eigenstates |0) (solid lines) and [1) (dotted lines).

Using N = (1/i)3/80 in (2.3), one instead obtains the Hamiltonian in the
phase representation and the Schrodinger equation for the W (8) = (6 |k) wave-
functions:

10
Ec(gﬁ — Ng)’ Wi (8) — E; cos()Wi(6) = ExWi(8) . (2.6)

Both representations can of course be used equivalently to find the energy spec-
trum, which depends on N, and on the E;/Ec ratio, as shown on Fig. 2. When
Ej/Ec < 1, the energy levels are very close to the electrostatic energies, €x-
cept in the vicinity of the so-called charge degeneracy points defined by N, =
1/2 (mod 1), where the degeneracy between the two lowest energy charge states
is lifted up by an amount E ;. With increasing E;j/Ec, the modulation by N of
the lowest eigenenergies becomes weaker and weaker.

It is interesting to note that except for precise combinations of E;/Ec and
N, values, the energy spectrum of a CPB is highly anharmonic. Consequently,
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manipulating |0) and |1) without exciting higher energy states is possible. These
two states are thus regarded as defining a qubit. We now compute explicitly the
|0) and |1) states in order to evaluate their physical properties, which will be used
to measure the quantum bit state.
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Fig. 3. Eigenenergies (middle panels) and wavefunctions of the |0) and |1) states in the charge and
phase representations, for Ny = 0 (left panels) and for Ng = 1/2 (right panels), and for E;/E¢ ra-
tios equal to 0.1 (top panels) and 1 (bottom panels). The Wy (N) eigenvectors are directly represented
since they can be chosen real, whereas the W} (9) wavefunctions are represented by their modulus
squared.
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2.3. Eigenstates in the charge and phase representations

Over an N, period like the interval [0, 1] and for E;/Ec < 2, the energy eigen-

states k) = > agn IN), can be found with a high accuracy by simply diago-
NeZ
nalizing a matrix (2.4) truncated to only seven charge states. The corresponding

W, (9) functions can be found by Fourier transform of the |k)’s expressed in the
charge representation or by solving directly the Schrodinger equation (2.6). This
equation is close to a Mathieu equation and its solutions are [9]

Eg = EcMa(k+ 1~ (k+ 1)/4[mod 2] + 2ng (=1, q)

wi0) = L Me(a,q, §) +i- D Ms(a.q. ]
where a = 4E;/Ec,q = —2E;/Ec, Mc¢ and Mg are the even and odd Math-
ieu functions, and M 4 is the function giving the characteristic values of Mc.
Figure 3 shows the two lowest stationary states |0) and |1) both in the charge and
phase representations, for N, = 0 and N; = 1/2, and for two different E;/Ec
ratios. For E;/Ec « 1, the situation is rather simple since |0) and [1) are very
close to the pure charge states |0), or |1). at N, ~ 0, and correspond to the
symmetric and antisymmetric superpositions of these charge states at Ny = 1/2.
In this limit, it is useful to restrict the basis to (|0}, , [1).), so that the Hamil-
tonian looks like that for a spin 1/2 (like any other two-level-system [10]), after
dropping out a constant term that depends on N, only:

2.7

H=--G.H, (2.8)

N | =

where ¢ = 6.X + 6,y + 6,7 is the vector of Pauli matrices and H=E;i+
Ec(1 — 2Np)Z. Introducing the angle o = arctan [E;/ {Ec(1 — 2N,)}], the
eigenenergies and the eigenstates are in this case FE;+/1 + cot’ a and

[ 10) = cos (2/2) [0). + sin (@/2) 1), 29

11) = — sin (et/2) |0), + cos (e/2) 1), °

respectively. For E;/Ec ~ 1, the |0) and |1) states are, for any Ng, made up
of coherent superpositions with significant contributions from at least three or
four pure charge states (see Fig. 3), so that neither  nor N are "good quantum
numbers”.

2.4. Expectation value of the box charge

The expectation value of the charge on the island or its dimensionless equivalent
(Ni) = (kIN|k) is an interesting quantity which can be used to discriminate
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|0) from |1), and thus to read out a CPB-based-qubit. It depends linearly on the
derivative of the energy levels with respect to Ng:

ol “~ 1 3E;
L _2Ec(N, —N Ne) =N, — — —— 2.10
BN, c(Ng ) = (Ni) A 2Ec aN, (2.10)

It is plotted in Fig. 2 for the two regimes already considered. For E;/Ec < 1
and close to half integer values of N, (No) and (Ny) vary as opposite rounded
staircases. Within the two charge states approximation, one deduces from (2.9)
the shape of the steps for N, € [0, 1]: (Ng) = sin? /2 and (N{) = cos® /2.
When E;/E¢ is increased, the steps are more and more rounded and have to
be calculated numerically. It is important to note that the difference AN =
{N1) — (Np) vanishes at the charge degeneracy points.

2.5. The split Cooper pair box

q)zt,CO 0
Tunnel Junctions

Ej(1+d)2
[C—l S
Cq

Ey(1-d)y2

Fig. 4. The split Cooper pair box. Top: Schematic representation showing the island, the two Joseph-
son junctions connected to form a grounded superconducting loop, the gate circuit, and the magnetic
flux bias. Bottom: Corresponding electrical drawing.

The split Cooper pair box is an improved CPB with a tunable Josephson en-
ergy and a second access port. It is obtained by splitting its Josephson junc-
tion into two junctions with respective Josephson energies E;(1 + d)/2 and
E;(1 —d)/2, where d € [0, 1] is an asymmetry coefficient (see Fig. 4). These
two junctions are connected together to form a superconducting loop which can
be biased by a magnetic flux ¢. Notice that the split CPB is similar to another
Josephson device, the Bloch transistor [11] (also called the single Cooper pair
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transistor) that was first described in 1985. The split box has two degrees of free-
dom, which can be chosen either as the phase differences :3\1 and /6\2 across each
junction, or as the linear forms 6= (5 —5) /2 and 3 = §) + &,, which represent
the phase of the island introduced previously and the phase difference across the
series combination of the two junctions, respectively. The conjugate variable of 5
is the integer number K of Cooper pairs which tunneled through both junctions.
The electrostatic "Hamiltonian” of the split CPB is that of a basic box [see
(2.3)] with C, representing now the sum of the two junction capacitances. Its
Josephson "Hamiltonian” is the sum of the Josephson terms of the two junctions:

~ 1+d o~ - —~
Hj =—-E; + cos(81) — Ey c0s(87) 2.1D)
5~ L8 A
=—-Ey cos(i) cos(0) + dE; sm(z) sin(@) . 2.12)

The superconducting loop of a split CPB is designed such that its self induc-
tance L is very small compared to the junction inductance L; = (p(z) /Ej, with

n 2
@o = h/2e. Consequently, the magnetic potential energy term ((pOS — <I>) /2L

attached to this inductance strongly fixes &, which can be considered as a classi-
cal parameter § = ® /¢y imposed by the magnetic flux. Finally, the Hamiltonian
of the split box is

H(N,,8) = Ec(N — N)? — E*(d, 8) cos[0 + Y(d, 8)] , (2.13)

with [12]:

_ 1+d2+(1—d?) cos(8)
E5(d,8) = gy o) (2.14)

tanY(d,8) = —dtan(3) .

A symmetric or almost symmetric (d = 0) split CPB is thus equivalent to a
basic CPB but with a magnetostatically tunable [7] Josephson energy E% =
Ejcos(8/2). Its energy spectrum (see Fig. 5) is periodic in N, (period 1) and
27 -periodic in 8, and can now be tuned by both the electric field applied to the
gate electrode and by the magnetic flux threading the superconducting loop. For
that reason, the split CPB has often been presented as a kind of artificial atom
showing strong Stark and Zeeman effects.

Splitting the box has also a second interest: it opens a second access port to
the device, which can be used to read out its quantum state [13—15]. The quantity
to be measured on this port is the persistent current in the superconducting loop,
its phase equivalent across the loop inductance, or the magnetic flux it produces.
This persistent current is calculated below.
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Ng 0 E;/Ec=1.0

Fig. 5. Two lowest energy levels of a split Cooper pair box with E ;/E¢ = 1, as a function of the two
external parameters N, and §. The energy is normalized by the Cooper pair Coulomb energy E¢. The
asymmetry coefficient d = 2% chosen here lifts up an energy degeneracy at (Np = 1/2,8 = £m).

2.6. Expectation value of the persistent current in the split box

Ey=Ec=1kgK-d =2%

-
o

Current (nA)
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Fig. 6. Expectation value of the persistent loop currents (i) for the ground state (solid line), and (i)
for the first excited state (dotted line), calculated for Ec = E; = 1 kgK, d = 2%, Ny = 0 (left
panel) and N = 1/2 (right panel).

The 3 and K operators being conjugate to each other, the operator associated
to the current circulating in the loop of the split CPB is

~ dk 10H

The average loop current (ix) of state |k) follows thus the generalized Josephson
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relation
1 0Ex(N,y, 8
(it (Ng. &) = {k |T] k>=%—%- (2.16)

Like the energy spectrum, (i) currents are also 27 -periodic in § and 1-periodic
in Ng, the extrema of (ip) and (i;) being of the order of E;/¢. Also, for N,
closeto 1/2 and E; < 3E,, {ip) and (i1} have opposite signs, as shown in Fig. 6.
Note that the difference Aijg = (i) — (ip) vanishes at § = 0 for all N.

Given the physical properties of the |0) and |1) CPB’s states, we can now
consider the different strategies for implementing, for driving and for reading a
qubit based on these states.

3. The Cooper pair box as a quantum bit

As previously mentioned, the two orthogonal states chosen to define a CPB-
based-qubit are its two lowest energy eigenstates |0) and |1). By varying N,, the
quantum state of the box can be manipulated within this subspace, provided that
the temperature is sufficiently low, that the N, excursion is limited, and that the
anharmonicity of the energy spectrum is large enough. To implement a qubit, the
CPB has also to be coupled to a readout device able to discriminate its two states
at a certain measuring point (Ng,,,, 8,,,) in the space of the external parameters
controlling its Hamiltonian. We consider here the case of a coupling between the
box and its readout, weak enough so that it does not modify significantly the [0)
and |1) states of the uncoupled box. When all these conditions are fulfilled, the
CPB can be regarded as a fictitious dimensionless spin 1/2, &, with a Hamiltonian

H (N, 8) = —%&.H (Ng, 8) . 3.1)

This Hamiltonian can be expressed in any frame R{X, y, Z} defined by

[ H (Ngo, ) = hvoi (Ngo, 80) Z (Ngo, 80)

£ 3.2
0H/INg.y =0 @2

where vo; (Ng, 8) is the transition frequency between [0) and |1) and (Ngo, 80)
is a particular point in the parameter space. Note that the frame introduced with
(2.8) when E;j/Ec <« 1 is a limit case, for which the reference states |0). and
[1), are almost equal to |0) and |1) for Ngo far away from the charge degeneracy
point. The time variation of the spin state can be visualized in the so-called Bloch
sphere picture, where the general quantum state

cos (0 /2) exp(—igy/2) |0) + sin(6,/2) exp(ig./2) |1) , (3.3)
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is represented by a vector with polar coordinates 6, and g, precessing around H
with a frequency | H|/ k. We now consider the different ways of modifying H in
order to manipulate 7.

3.1. Manipulation of the Cooper pair box quantum state

Vuw < |lb

Fig. 7. Bloch sphere representations showing how the CPB state has been manipulated in two differ-
ent types of experiments. The left sphere with two adjacent pure charge states at the north and south
poles corresponds to a CPB with E; /E¢ << 1, which is driven to the charge degeneracy point with
a fast dc gate pulse. The right sphere with energy eigenstates at the poles describes within the rotat-
ing wave approximation how a CPB is driven with microwave voltage pulses (see text for detailed
explanation). The spin is represented by a thin arrow whereas fields are represented by bold arrows.
The dotted lines show the spin trajectory, starting from the ground state.

3.1.1. Constant perturbation applied suddenly to the Hamiltonian

The first method that was used experimentally in 1999 [16] to prepare a CPB-
based-qubit in a coherent quantum superposition of its 2 states consists in apply-
ing to its gate (or to a second gate specially designed for that purpose) a trape-
zoidal N, pulse with rise and fall times much shorter than 1/vg;. This method
was implemented on CPBs with E;/Ec <« 1, the gate charge being initially
tuned at a value N, of the order of 0.3 during a time long enough so that the
qubit has relaxed to its ground state |0) >~ |0).. On the Bloch sphere drawn in
the pure charge state referential (see left panel of Fig. 7), the initial situation cor-
responds to the spin parallel to the vector H = E ;X + Ec(1 — 2N,)Z, the latter
making a small angle ag ~ E;/Ec(1 — 2Ng) < 1 with Z. Then Ny is brought
suddenly to N,o = 1/2 in a time so short that the evolution of the spin during
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this transition is negligible. Now H = E ;X induces the Rabi precession of the
spin around the x axis at the Rabi frequency

VRabi = Ej/h. 3.4)

After a time f, the coherent superposition that is built has a weight cos® ag -
sin? VRabit On |1).. N, is then brought back suddenly to its initial value. The
qubit precesses then around the initial H and can be measured (see section 3.2)
in the (|0)., |1}.) = (|0}, |1)) basis. Any superposition state, i.e. any point on
the Bloch sphere can thus be reached in a time shorter than [E;/2 + Ec(1 —
2N,)]/ h, by applying first a single pulse and by waiting then during a precise
time. Besides, it is interesting to notice (the result will be used in section 5 ) that
if ANy = Ngo—1/2 # 0, the maximum probability to measure the qubit in state
|1). after a single pulse is strongly reduced as

1
1+ (2EcAN,/E))"

The present driving method has been used successfully by two research groups
[16,17]. It has the great advantage of inducing fast Rabi oscillations that can
be observed even if the coherence time is rather short. On the other hand, one
needs a very fast pulse generator with rise and fall times well below 100 ps. An
alternative to this method is to use a harmonic perturbation.

(3.5)

3.1.2. Harmonic perturbation applied to the Hamiltonian

A second way to build superposed states is to apply a small resonant or almost
resonant harmonic perturbation to the spin following the techniques developed
in atomic physics and in Nuclear Magnetic Resonance. More precisely, a mi-
crowave pulse AN, cos(2m vyt + @), with v, &~ vo1, is added to the DC gate
voltage and introduces in the Hamiltonian (2.13) a perturbation, which is written
in the spin formalism as:

Her = 4ECc AN, cosrvyyt +¢) [{(LIN[0) X + ANoZ]. (3.6)

When vy, is close to vgy, the effect of the longitudinal part ﬁm .Z on the motion
of & can be neglected. Moreover the CPB is usually operated at the charge de-
generacy point (see section 2) where ANy = 0, so that H,..7 = 0. We are thus
left with the transverse perturbation whose effect on & is simpler to describe in
a frame R'{X’, §', 7'} rotating at the frequency v,,,, around Z’ = Z . Within the
so-called rotating wave approximation [18], the free Hamiltonian and the pertur-

bation correspond in R’ to:
H = hAv7 with Av = vo; — v (3.7)
Hox = hvgo [¥/ cosg + 7 sin ] with vgo = 2EcANg (1[N 0) /h . (3.8)
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When no microwave signal is applied to the gate, & precesses freely in R” around
7 at the detuning frequency Av, whereas during microwave pulses, it precesses
around H + H,, (see right panel of Fig. 7) at the Rabi frequency

Av 2
VRabi = VRO4/ 1+ —}
VRO

which is proportional to the dimensionless microwave amplitude AN, when de-
tuning Av is chosen well below vgg. Starting from |0), the probability to measure
[1) after a single pulse with effective duration ¢ is thus cos? a(’) sin® vgapit, With
tan ((x6) = vgo/Av . Note that the rise and fall time of the microwave pulses
do not need to be short and that the precession axis and the Rabi frequency are
tunable through the three parameters AN,, v,,, , and ¢. Moreover, any single
qubit gate (i.e. any rotator operating on the Bloch sphere) can be implemented
with a sequence of resonant pulses along X" and y' only [19], and all the tricks
developed in NMR like composite pulse techniques [18] are applicable. This mi-
crowave driving method has been successfully applied to a split box [20] with
E;/Ec ~ 1, and also to phase [2] and flux [3] Josephson qubits.

3.1.3. Adiabatic acceleration

Finally, we also mention here an alternative way to perform a rotation around 7',
using a technique transposed from the ”Stark pulse technique” known in atomic
physics [21]. It consists, starting from a freely evolving superposed state

a|0) + bexp[2mvg (Ngo, 80) ¢] 1),

in applying a closed adiabatic variation of the external parameters N, and § away
from and back to the working point (N, 80) in order to decrease or increase
temporarily the deterministic relative dephasing speed 2w vy (Ng, 8) between
components |0) (Ng, 5) and |1) (Ng, 8), without changing their weights. This
method has been successfully tested with the split box mentioned above by mov-
ing adiabatically N, away from and back to (Ngo =1/2,8 = 0) along the bold
line of Fig. 12.

3.2. Readout of Cooper pair box quantum states

Many different strategies [ 13-16,22-24,26,27] have been proposed to distinguish
the |0) and |1) states of a CPB. For some of them, the readout is coupled to the
box charge whereas for others, it is coupled directly or indirectly to the § phase
degree of freedom of a split box. In all cases, an important distinction is whether
the readout device is designed to perform a projective measurement onto some
|0) and | 1)’ states close to |0) and | 1), or if it designed to perform a non projective
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measurement involving a relaxation process of the box from |1) to |0). A second
characteristic is whether the readout is designed to be switched off during the box
manipulation and then switched on to measure it with a signal to noise ratio larger
than 1 in a single shot, or if it is designed to measure continuously a box which
is periodically prepared in the same coherent state, so that the signal becomes
detectable only after many repetitions. Although almost all possibilities have
been considered in theoretical proposals, we describe below only the methods
that have been really implemented experimentally. A last important property that
will be considered in section 4 is the back-action that the readout induces onto
the qubit and that can limit its coherence time.

3.2.1. Box charge used to build a current through an additional tunnel junction
At a time when no ultrasensitive electrometer would have been fast enough to
discriminate the average charges (N1) and (Np) of a CPB-based-qubit in a time
shorter than its relaxation time, Y. Nakamura and co-workers added to a split
CPB with E;/Ec « 1 a clever readout, which demonstrated in 1999 the first
Rabi oscillations of an electrical circuit (see Fig. 8). A small and very opaque
additional tunnel junction is connected to the island and biased with a voltage
V such that an extra Cooper pair can enter the island and be broken into two
electrons which then tunnel sequentially through the junction with rates I'yp)
and [yp2 [16]. In the |0) state, this cyclic process gives rise to a finite current
through the junction, the Josephson quasiparticle current (JQP) [28]. When the
box is in its |1) state at Ngg ~ 0.2 — 0.4 with (N) ~ 1, it relaxes to its |0) state
with (Nog) ~ 0 in a single JQP cycle with a relaxation rate I'y,1. By repeating
rapidly the preparation of the |1) state, the JQP current can then be made larger
than in the |0) state, the difference being used to measure the qubit state. Note
that the coupling between the box and the readout being weak, the measured
states are very close to |0) and |1), although the measurement is not projective
and resets automatically the qubit to |0). This method is by design not single shot
and the voltage V is applied continuously while the same preparation of the state
is repeated, using the fast trapezoidal N, pulse technique described in section
3.1.1.

3.2.2. Capacitive coupling to an electrometer

The most natural way for discriminating the two CPB states is to measure the
expectation value (N) of its island charge by coupling it capacitively to an elec-
trometer. The basic single electron transistor (SET) [5] was the first electrometer
used to characterize the |0) state of a CPB by measuring the 2e periodic Coulomb
staircase [7] mentioned in section 2.4. This device has a maximum bandwidth of
a few kHz and is far from being fast enough to measure the |1) state before it
relaxes to |0). A faster version of the SET, the RFSET, was invented in 1998 [25]
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Fig. 8. First demonstration of quantum coherent control of an electrical circuit by Y. Nakamura et al.
Top: simplified diagram of the setup, which includes a CPB and a readout made of a voltage biased
additional opaque tunnel junction connected to the island. When fast DC pulses are applied repeti-
tively to the CPB gate, the Josephson quasiparticle current / through the readout junction reflects the
occupation probability of the CPB charge states |0),. and |1} (see text). Bottom: Rabi oscillations of
the CPB state measured by the variation of /. Courtesy of Y. Nakamura et al., NEC, Japan.

and was used by P. Delsing et al. [17] to measure a split CPB with E;/E¢ < 1,
using the setup shown in Fig. 9. This RFSET includes a SET made up of an island
defined by two tunnel junctions in series, biased with a voltage source. At DC
voltages lower than or of the order of the Coulomb gap, the IV curve of the SET
is modulated by the average charge of the CPB capacitively coupled to its island.
By inserting the SET in parallel with the capacitance of a tank circuit that res-
onates in the radiofrequency domain and by applying a quasi-resonant RF signal
to the ensemble, one measures a reflection coefficient that depends on the charge
coupled to SET. The coupling between the RFSET and the CPB being weak, this
readout is of the projective type. Besides, it can in principle be switched on and
off with both the DC voltage and the RF input signal. Moreover, its sensitivity
of the order of 10¢/+/Hz is high enough and its back-action onto the qubit
during the measurement is low enough that it can be operated in a single shot
mode [27], provided that the qubit relaxation time is larger than or of order 1 us.
Unfortunately, at the time of writing (2003), it has proved difficult to measure a
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CPB in this mode. Rabi oscillations [17] were demonstrated over a few nanosec-
onds with the fast trapezoidal N, pulse technique and with the RFSET operated
in the continuous mode (see Fig. 9).

An important point to notice is that a CPB-based-qubit measured through its
average charge (N) is usually in the regime E;/E¢c < 1, for which the signal
ANjp ~ 1is maximal as soon as N, # 1/2. Consequently, its Coulomb energy
E¢ is rather high and its Hamiltonian is sensitive to any external charge fluc-
tuations. It is well known that single charge devices like the CPB have always
suffered from charged two-level-fluctuators, which play the role of additional
noisy gate voltage sources and can thus induce decoherence of the qubit state
(see section 4). It is thus interesting to increase E;/E¢ and to find an alternative
to the measurement of (N).

AQpox [e]

At [ns]

Fig. 9. Coherent control of a CPB by P. Delsing et al. Top: Simplified diagram of the setup showing
that the CPB island is coupled capacitively to an RFSET, the RF reflecting power of which depends on
the CPB average charge. Middle right: Scanning electron micrograph of the sample showing the SET
on the left and the (split) box on the right. This sample was made by double angle shadow evaporation
of aluminum through an e-beam patterned resist mask. Bottom: Rabi oscillations obtained with this
readout, when applying repetitive fast DC pulses to the CPB gate. Here, AQp,y is the average
charge on the box island. Courtesy of the ”Quantum Device Physics” group, Chalmers University of
Technology, Géteborg, Sweden.
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3.2.3. Measurement of the split box persistent current: The Quantronium

A possible alternative to measurements of (N) consists in measuring the per-
sistent current of a split box or the magnetic field it produces. For measuring
the magnetic field, the superconducting loop of the split CPB can be coupled by
mutual inductance to a SQUID or to a tank circuit whose effective inductance be-
comes different for the |0) and |1) CPB states, as proposed by A. Zorin et al. [14].
The latter technique is similar to that used for the RESET and is currently under
development.

We now describe the Quantronium, a setup proposed by D. Esteve [13] in or-
der to discriminate the split box states directly through its loop persistent current.
The circuit sketched in Fig. 10 consists of a split CPB with an additional current
biased large Josephson junction with Josephson energy E o > E,, inserted in
the superconducting loop. During the manipulation of the qubit, the bias cur-
rent 1, is kept small, so that the effective inductance of the additional junction is
small and that the phase y = arcsin(go/,/ E jo) across it behaves classically. The
Quantronium is thus, during manipulation, a split box with § = & /gy + y, the
current biased junction playing only the role of an additional phase source for the
split box. During the readout process, the additional junction is used to transfer
adiabatically the information about the quantum state of the split box onto the
phase y, in analogy with the Stern & Gerlach experiment, where the spin state of
a silver atom is entangled with its transverse position. For this transfer, a trape-
zoidal readout pulse I, (¢) with a peak value slightly below the critical current
Io = Ejo/¢o is applied to the circuit. Starting from § = 0, the phases (y) and
(8) grow during the current pulse and a state-dependent supercurrent develops
in the loop. This current (i) adds algebraically to I, in the large junction and
modifies its switching rate I". By precisely adjusting the amplitude and duration
of the 7,(t) pulse, the large junction switches during the pulse to a finite voltage
state with a large probability p; for state |1) and with a small probability pg for
state |0) [13]. The switching of the large junction to the voltage state is then de-
tected by measuring the voltage across it with an amplifier at room temperature.
Although this measurement scheme is projective in a first step, it is nevertheless
destructive due to the large amount of quasi particles produced when the voltage
develops across the readout junction. Besides, it is designed to be single shot, its
efficiency being expected to exceed n = p; — po = 95% for a critical current
Iy ~ 0.5 — 11t A and for the persistent currents plotted in Fig. 6. A Quantronium
sample has been operated successfully (see Fig. 10) with the microwave N, pulse
technique, although the maximum overall efficiency of its readout was only n ~
20%. This sample has the longest coherence time observed so far (2004) in a
Josephson qubit. The reasons for this success are analyzed in the next section
devoted to decoherence of CPB-based- qubits.
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Fig. 10. Coherent control of a Quantroniun by the Quantronics group of CEA Saclay. Top: simplified
diagram of the setup showing the readout Josephson junction inserted in the loop of a split box . A
trapezoidal current pulse /,(¢) is applied to this junction so that the latter switches out of its zero
voltage state with a higher probability if the Quantronium is projected onto |1) than if it is projected
onto [0). Bottom right: Scanning electron micrograph of a Quantronium made by double angle
shadow evaporation of aluminum. Bottom left: Rabi oscillations obtained on a Quantronium with
Ej; = 0.86kgK and Ec = 0.68kp K when applying repetitively a resonant microwave pulse to the
gate and a current pulse to the readout junction. Each experimental point is an average over 5 x 10*
sequences.
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4. Decoherence of Josephson charge qubits

4.1. Evaluation of decoherence: a simple approach

As with cany other quantum object, CPB-based-qubits are subject to decoherence
due to their interaction with uncontrolled degrees of freedom present in their en-
vironment. From a general point of view, these interactions between the CPB
and its environment entangle them in a complex way, which can be analyzed
in principle by writing the total Hamiltonian of the system {CPB+environment}
and by computing the evolution of the qubit reduced density matrix. Although
this method has been used successfully for calculating decoherence induced by
an RFSET [29] reading a CPB, it is in practice intractable in many cases. More-
over, it does not lead to analytical expressions showing directly the influence of
each parameter and of each decoherence source, so that it is not always of great
help for designing an experiment. Fortunately, decoherence during the free evo-
lution of the qubit can be described in a much simpler way when the coupling
between the qubit and its environment is weak. Indeed, an external parameter A
(such as N, or §) entering the Hamiltonian H=-1 27 - —FI)(A) submitted to
small quantum fluctuations from the external degrees of freedom can be treated
as an operator of the environment. More precisely, each independent part X of
the environment plays the role of an independent quantum noise source on the
centered operator')to = — (). To first order, the coupling Hamiltonian between
this source and the CPB is written

Ay =-1/2 (BA?)Tg, @.1)

where D, - @ is the restriction of —28 H /34 to the {|0) , |1)} space. Then, from
the noise properties of each source X, one calculates separately three relevant
quantities that characterize X-induced decoherence: the first two characterize the
depolarization of the fictitious spin representing the qubit. They are the excitation
"'y, x and relaxation I" x rates giving the probability per unit time of X-induced
|[0) — |1) and |1) — |O) transitions of the qubit, respectively. The third rele-
vant quantity is the “dephasing function” fx () = (exp[i Agx(¢)]) involving the
X-induced random dephasing Agy (1) between the two components of a super-
posed state a(z) |0) + b(t) exp[i Apx ()] |1) (note that fx(¢) is not necessarily
exponential and characterized by a rate). The evolution of the qubit density ma-
trix is then easily deduced from the values of I'y x, the values of I'y x and the
fx () functions. Introducing the total dephasing function F(r) = [y fx(¢) and
the total upward and downward rates 'y = )y Ty y and ") = Y, ' x, the
diagonal elements evolve exponentially towards their equilibrium values 1 — ¢
and € = I'y / I' with the characteristic rate I'y = I'y 4- ', whereas off-diagonal
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elements decay as F,(t) = exp[—I"1#/2]F (¢). In the next sections, we calculate
explicitly I'y x, I"y x and fx (¢) for the main decoherence sources X , in the case
when the noise Aé( is Gaussian and can be fully characterized by a generalized
quantum spectral density function of angular frequency w [1]:

sX¢ _ oo X X s
f@=o| dz<io (1) (t—l—t))exp( iwr). 4.2)

In this expression, the prefactor is chosen so that S{f} (w) coincides in the classical
limit and at low frequency with the spectral density of the engineer. Note that
Sfo (w) is defined for positive and negative w’s, the positive and negative parts
being proportional to the number of environmental modes that can absorb and
emit a quantum hw, respectively.

4.2. Overview of decoherence sources in a CPB

WK,
Sk © o]

7777

Fig. 11. Main decoherence sources in a Quantronium device. Quantum noise on N is generated by
charged two-level-fluctuators (A) located near the CPB island and by voltage fluctuations of the series
impedance (C) in the gate line. Quantum noise on § is generated by fluctuations of the magnetic field
(B) and by current fluctuations of the finite impedance (D) in parallel with the current bias source of
the readout.

The uncontrolled degrees of freedom coupled to the idealized CPB of section
2 include those of the CPB substrate, those of the electrical lines of the driving
and readout circuitry, and also the CPB’s microscopic internal degrees of freedom
which have been considered as frozen up to now. As an example, Fig. 11 shows
the main decoherence sources in a Quantronium device (see section 3.2.3), which
are now presented briefly.

Background charge noise First, microscopic charged two-level-fluctuators
(A in Fig. 11) always present near the CPB island, either on the substrate or
inside the Josephson junctions, are coupled to N and act on the box as additional
uncontrolled N, sources. Although this background charge noise (BCN) is out of
equilibrium and its generalized quantum spectral density is unknown, its classical
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spectral density §,€£N (w) ~ B/ |w| has been measured up to the MHz region,
the values found for B being of order 10~/ — 1077,

Impedance of the gate line The finite series impedance Z, in the gate line
(Cin Fig. 11) can be regarded as an infinite collection of harmonic oscillators [1]
also coupled to N and inducing quantum noise on N,. The circuit as seen from
the pure Josephson element of the CPB (junction capacitance not included) is
equivalent [9] to an effective gate capacitance Cy in series with a voltage source
kg V, having an internal impedance Z,,. In the weak coupling limit defined by
kg = Cg/Cx < 1 and for all relevant frequencies, the real part of Z,, is written:

Re[Zey] ~ k7 Re[Z,] . (4.3)

At thermal equilibrium at temperature T, Z,, generates voltage fluctuations
whose spectral density S, corresponds to N, fluctuations with spectral density

N&’ :
Su 1 COth I)\e Zeq ’ .
u K C + CO A 4.

where Ry = h/e? ~ 26kS2.

Magnetic flux noise Fluctuations of the magnetic field threading the loop of
a split CPB (B in Fig. 11), either due to the motion of vortices in the vicinity of
the loop or more macroscopically due to the current noise in the wires producing
the field, generate directly § noise. When the noise source is a circuit inductively
coupled to the loop, its spectral density can be easily derived following the same
method as we follow below for calculating the back-action of a Quantronium
readout.

Readout back-action For a CPB measured by an RFSET (see section 3.2.2),
the stochastic tunneling of electrons into and out of the SET island generates
quantum noise on Ng. The reader can refer to {27, 29] for a characterization
of this noise. For the Quantronium, the back-action of the readout circuit is
the quantum noise on § induced by the finite admittance Y in parallel with its
current source (D in Fig. 11). More precisely, when a bias current I, < Iy is
applied to the Quantronium, small oscillations of the phase § are centered on
8o = arcsin(l,/lp) and the readout junction behaves as an inductance Lo =~

546 D. Vion

@o/[1o cos §p] much smaller than the inductance L, of the box junction. Yz and
Lo form together an effective admittance Yr ., = Yr //Ljo that generates
current fluctuations characterized by the spectral density

ho hw
S; = 7 [1 + coth (m)jl Re[Yr ] (4.6)

|Yr | being much smaller than the effective inductance of the series combination
of the two CPB Josephson junctions, this current / goes through Yg .4 and is
converted into noise on voltage v = ¢odd/dt = I/Yg ¢4 , or equivalently into a
8 noise with spectral density

1\* S;
SiR ~ ((po—w> — 4.7
‘YR + iLjow‘

Internal decoherence sources Finally, as examples of internal decoherence
sources, one can think of out-of-equilibrium quasiparticles tunneling across the
Josephson junctions or of an atom in the CPB Josephson junction jumping back
and forth between two atomic sites so that a tunneling channel of the junction
is open and closed randomly, such that it induces noise on E;. Note that part
of the decoherence of Josephson phase qubits has been attributed to this latter
phenomenon [2].

4.3. Depolarization of a Cooper pair box

Relaxation and excitation proceed by exchange of an energy quantum A2 be-
tween the qubit and an oscillating field of the environment with pulsation @ =
Qo1 = 2mvg1. Applying the Fermi golden rule to such processes gives:

2
7 (D
Fx=3 ( ;i> Sho.x(Q01), (4.8)
2
n (D
rx=7 ( ;l) Sio.x(— Qo) » 4.9)

where the transverse part of DA, D, 1 = 2|(1 8H/8A [0} ], is equal to
4Ec| (0] N |1) | for all N, noise sources and equal to 2¢o| (0] 1 {1) | for all § noise
sources, according to (2.13) and (2.15), respectively. Going further requires then
specifying the origin of the noise. For the background charge noise, the spectral
density is unfortunately unknown in the GHz range that corresponds to Qg so
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that no serious prediction of I'| x and I'y x can be made. For the gate line im-
pedance Zg () at a temperature T < S201/kgs, Sn,.z, (—S201) and Sy, z,(€201)
obey detailed balance and

Iy z, hS201
=exp(——) K 1.
Tiz, P kT

Then, after substituting D;_; and (4.5) at zero temperature in (4.8), one gets the
relaxation rate

2 Rf:[Zg(Qm)]g2

, 4.10
R ot (4.10)

I}z, = 167k [(OIN[1)]
which takes the simpler form Iz, = 4711«55201 sin® Re[Z;(R201)1/ Rk in the
limit Ej/Ec « 1. In conclusion, a Re[Z¢(20GHz)] as large as 102 coupled
with kg ~ 1 — 2% would induce relaxation of a CPB having a 1kg K transition
energy with a rate of only 0.1 sin” @ MHz.

We evaluate now the relaxation induced by a resistance R = 1/Yp in paral-
lel with the Quantronium readout junction. Substituting D; | and (4.7) at zero
temperature in (4.8), one obtains after simple algebraic transformations:
2|0’
hQo1

R

Tr= @.11)

R
‘1 + iL oS

which simpliﬁei to I'yrp = 2 (OITII) |2R/(hS201) for R « LjoR01. At
Ng = 1/2, (0|I|1) increases linearly with the asymmetry d between the box
junctions. I'} g varies as d? and a Quantronium with a 1kgK transition energy
and an asymmetry d = 5% would relax with a rate of order 1 MHz under the in-
fluence of a readout resistance R = 22 at 20 GHz. Obtaining balanced junctions
during the fabrication of a Quantronium is thus an important point.

4.4. Random dephasing of a Cooper pair box

In a semi-classical approach, the random phase Agy (t) between the two compo-
nents of a superposed state is obtained by integration of the longitudinal fluctua-
tions of Hy:

t

D
Apx (1) = g’z f A (@har', (4.12)
0

where the longitudinal part of Dy, Dy, = (0| §H/3A10) — (1|§H /a1 (1) ~
hdvg1 /92, is equal to —2E¢c AN for all N, noise sources and equal to —gpAijg
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for all § noises sources, according to sections 2.4 and 2.6. An important point to
notice is that the coefficients of sensitivity to charge and phase noise, Dy, and
Ds ;, vanish when ANjg and Aij are equal to zero, i.e. at N, =0 and § =0,
where the transition frequency is stationary. Then, Aé‘ (¢) being a Gaussian noise
in most cases, the ensemble average fx (1) = (expli Apx(¢)]) is written

fx(®) = expl— (8¢ ) /21 (4.13)

and depends only on the variance of the random phase, which can be calculated
from the classical spectral density S)}fo (w) of Ag:

2 pdqoo -
<A¢§(1))=(D;L'Zt> / do s{g(w)sincz(%’), (4.14)

with sinc(x) = sin(x)/x. A full quantum calculation [9] of fx (), based on a
thermal average over a bath of harmonic oscillators linearly coupled to A, gives
the same result:

2 2 p4o00
Fx(t) = exp [_’_ (D“> f do s{fo(w)sincz(%’)] , (4.15)

2 h —0

but with Eﬁ] being replaced by its quantum analogue. Applied to the background
charge noise, (4.15) becomes

2Ec ANio\?
feen () =exp |:—B (—gh—ﬂ) *In ;:l , (4.16)

where 7 is the time taken experimentally to define the average transition fre-
quency, this time introducing a low frequency cutoff 1/7 in the integral of (4.15).
The function fpcny(t) decays almost as a Gaussian with an effective charac-
teristic time 7,;'8€Y = [2/BIn(tr/)Ec ANo/R]™! that decreases almost as
1/(N, — 1/2) close to the charge degeneracy (see the AN)q variations of Fig.
2). Assuming B ~ 1078 and t ~ 10%s, one gets Ty 5N ~ 50ns for a CPB with
E; ~ Ec ~ lkgK operated at N, = 0.55.

In contrast to §1€£N (w), spectral densities S{f} (w) of other noise sources are
often rather flat below a cut-off frequency w,, so that fort > 1/, S ){(O(w) ~
Sﬁ) (0) in the w range where the sinc square term gives its main contribution to
the integral in (4.15). Consequently, fx (f) ~ exp[— l"(ff t] with a decay rate

Dy
ry %n( = ) S} (@ 0) . 4.17)
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At 50 mK, spectral densities (4.5) and (4.7) vary only by a factor two below
200 MHz so that (4.17) holds for t > Sns. Substituting the correct D, | and (4.5)
[resp. (4.7)] at zero frequency in (4.17), one finds the contribution to random
dephasing of the gate line circuit (resp. of the Quantronium readout):

Z kgT R
ry ~ 8nx§AN,20(Ng0)TR—k , (4.18)
1 [ AigGo)\* kT R
R~ - i10(%0) \~ kg Re @.19)
¢ 8x \ Iycosé A R

where R is the resistance of the gate voltage source (4.18) and the resistance in
parallel with the Quantronium readout junction in (4.19), in the 0.1-100 MHz
frequency range. Taking the same CPB parameters as in the previous section

and assuming an electronic temperature of 50 mK, one gets I‘g‘ < 25kHz for
R = 102, showing that the gate line is not an important dephasing channel.
Assuming then typical values Ip ~ 500nA and R = 1002 for a Quantronium
readout circuit, one obtains I‘g ~ 285(rad)/ cos® $6MHz. Therefore, Fg is
negligible close to §o = 0 and increases very rapidly up to about 100 MHz at the
top of the readout current pulse, where § approaches 7 /2.

4.5. Design rules and optimal working points

We now focus on the requirements that an experimental setup has to fulfill in or-
der to demonstrate an operational CPB-based-qubit. First, the CPB has to be reset
in its reference stable state |0) with a small probability of errore > € = 'y /Ty.
This takes a reset time t, ~ e/I"| that defines the maximum repetition rate in
an experiment. Secondly, during the manipulation of the state, the characteristic
decay time 75" of F>(¢) must be as long as possible in order to perform as many
coherent single qubit or two qubit gate operations as possible. Consequently,
T\ = 1/T"1 and the characteristic decay time T; of the F function have to be
maximized. For that purpose, a first action is of course to minimize all the noise
spectral densities of section 4.2. A complementary approach is to choose a work-
ing point where the sensitivity to noise is minimal. For a split box, according
to sections 4.3 and 4.4, T| and the TJ’S can be maximized by choosing a ma-
nipulation point such that (1| 7 |0) ~ 0 and such that the transition frequency is
stationary with respect to both N, and § fluctuations. Figure 12 shows that the
point (N, = 1/2,8 = 0) is such an "optimal manipulation point”. But since
both charge signal AN and current signal Aig vanish at this point, one has
to apply a shift to N, or § at the end of the manipulation to measure the qubit
state through the charge or phase port. Then, the elementary measuring time t,,,0,
defined as the time during which the readout interacts with the qubit after the
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preparation of a particular quantum state, is constrained in a way that depends
on the readout strategy. When the readout absorbs the transition energy of the
qubit as described in section 3.2.1, the readout port must be the main relaxation
channel in order to avoid errors. Therefore, the values of I' | x and #,,0 must obey
1/T1 = 1/T, = /T readour < tmo. In all other cases, a readout error proba-
bility smaller than e, requires e¢,T] > t,0. Consequently, we wish to maximize
T} during readout by choosing a measurement point where (1| |0) = 0 as well.
Moreover, to has to be longer than T; since the qubit density matrix has to be-
come diagonal before a projective measurement is completed. Since dephasing
is required only during measurement, it is thus a good design rule to implement
a switchable readout device such that T decreases by several orders of magni-
tude when the readout is switched on, whereas T} remains long. Moving away
from an optimal manipulation point” along a ’slow relaxation line” is just such
a switch. Finally, it is convenient to have a single shot readout, able to distinguish
the two qubit states with a small error rate e, within the time f,,0. Otherwise, re-
peating several times the preparation and the measurement of the same quantum
state is required to reach the same target error rate. The Quantronium has been
designed to fulfill all the requirements mentioned here and has demonstrated ex-
perimentally good quantum coherence properties, which are presented in the next
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Fig. 12. Sensitivity to decoherence of a Quantronium with E; = Ec = 1kgK and d = 2%, as
a function of its reduced external parameters N, and §/27. Left box: Loop current matrix element
between states |0) and |1). This matrix element and consequently the relaxation rate of the qubit are
minimal along the lines § = 0 and Ny = 1/2. Right box: Transition frequency of the Quantronium.
The arrow indicates the stationary point (N, = 1/2, 8§ = 0) where pure dephasing vanishes to
first order. Consequently, this is the optimal point for coherent manipulation of the Quantronium.
For reading out the state, the working point is adiabatically moved along the bold solid line, where
relaxation of the qubit induced by quantum noise on § is minimal.
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4.6. Experimental characterization of decoherence

The results presented below have been obtained with a Quantronium sample sim-
ilar to that shown in Fig. 10, with E; = 0.86kgK, Ec = 0.68kpK, and an asym-
metry d between the CPB junctions not precisely known, but lower than 5%. We
first measured the relaxation time at the optimal working point by switching on
the readout at some variable time ¢4 after applying a microwave & pulse that pre-
pares the qubit in state |1) (see Fig.13). A rough estimation of the readout resis-
tance of the setup giving R(20GHz) = 1Q2 — 5%2, the experimental Ty = 1.8us
could be explained by an asymmetry coefficientd ~ 5% — 2%.

~ 50 T T T T T T
b T t readout

switching probability (%

0 1 2 3 4 5 6 7
time tyq (us)

Fig. 13. Decay of the switching probability of the Quantronium’s readout junction as a function of the
delay between a microwave 7 pulse and the readout current pulse. The solid line is a fit of the data
(dots) by an exponential shifted by the signal measured when no microwave is applied (horizontal
bottom line).

Then, spectroscopic measurements (see Fig. 14) of vy were performed by ap-
plying to the gate a weak continuous microwave irradiation suppressed just be-
fore the readout current pulse. The variations of the switching probability as a
function of the microwave frequency, display a resonance peak whose position
vo1 as a function of N, and § leads to a precise determination of £, and Ec. The
resonance line shape being the Fourier transform of F5(¢), the full line width at
half-maximum Avyg leads to an effective coherence time 7. 2* = c¢/Avgiwith ¢ ~
1/m depending on the exact line shape. As expected, Avg; was found to be min-
imal at the optimal point (N, = 1/2, 8 = 0), where Avg; = 0.8 MHz. Conse-
quently, 27} > Ty 2 0.4us = T and decoherence is dominated by random de-
phasing. When departing from the optimal point, the line broadens very rapidly.
For Ny # 1/2, it also becomes structured and not reproducible (see top right
panel of Fig. 14) due to individual charged two-level-fluctuators. Nevertheless,
the general trend (see bottom panel of Fig. 14) is that Avg; varies more or less
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linearly with N, — 1/2 and 8, the proportionality coefficients d Avg;/ 9(8/2m)
and dAvg1/ 3N, being of order 0.3GHz. Noticing that vy varies quadratically
in the vicinity of the optimal point so that D, ; =~ hdvg; /A & A  Avg, one
deduces from section 4.4, that both charge and phase noises are peaked at low
frequencies and that the random dephasing functions should decay as Gaussians.
This effect is well understood for the charge noise, which is dominated by the 1/f
contribution of microscopic origin. Using the actual parameters of the sample in
(4.16), the experimental 9 Avy;/ dN, leads to an amplitude B ~ 10~ for the
BCN, a value in agreement with previous measurements on similar Josephson
devices. By contrast, the origin of the low frequency phase noise is not under-
stood. An important point to mention here is that the experimental value of T at
the optimal working point corresponds to that estimated by taking into account
the second order contribution of the charge and phase noises.
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Fig. 14. Spectroscopy of a Quantronium. Top left panel: transition frequency as a function of § at
Ng =1/2 and as a function of Ny at § = 0. The solid line is a fit that gives E; and E. Right panels:
resonance lines recorded with a small microwave power at three different working points (same scale
for all lines). Bottom left panel: Full width at half-maximum Avg; of the resonance lines. Due to
a slow and large charged two-level-fluctuator (TLF), data points can vary by a factor 2. The dotted
lines indicate that Avg varies linearly with the external parameters when this TLF is stable.
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The direct measurement of the coherence time T, during free evolution was
obtained by performing a Ramsey-fringe-like experiment (see also [21]). One
applies to the gate two slightly off-resonance /2 microwave pulses separated
by a delay At during which the spin representing the qubit state precesses freely
at frequency Av in the equatorial plane of the Bloch sphere. Whereas the first
pulse simply sends the spin onto the equator, the second one converts the phase
accumulated during At into a longitudinal component of the spin. The probabil-
ity to measure |1) at the end of the sequence oscillates as cos? (m AvAt) with an
amplitude that decays as F>(¢). Figure 15 shows the result of such an experiment
performed at the optimal manipulation point. Although the low signal to noise
ratio and the long term drift due to 1/f noise prevents determination of wether the
decay of the oscillations is more Gaussian than exponential, a fit of the data leads
to T > 0.5us, a value that corresponds to that previously deduced from the res-
onance line width. Given the transition period 1/vg; ~ 60ps, the coherence time
T corresponds to about 8000 free precession turns around the z axis. Assuming
that a bit flip can be performed with a microwave pulse of only 30 oscillations,
i.e. in a time ~ 2ns, T, corresponds also to the time required for about 250 bit
flips.

w2 t w2 readout

switching probability (%)

00 01 02 03 04 05 06
time t between pulses (us)

Fig. 15. Ramsey fringe experiment on a Quantronium: When two 7/2 microwave pulses detuned
with Av = 20.6 MHz and separated by Ar are applied to the gate, the switching probability of the
readout junction oscillates as a function of Ar with frequency Av. Each experimental point (dot) is
an average over 50000 sequences. The solid line is a fit by an exponentially decaying cosine, the
decay time constant of which corresponds to the coherence time 7.

The coherence can also be maintained artificially during a time longer than
T; using NMR-like echo sequences [18]. An intermediate 7 pulse is inserted
in a Ramsey sequence, a time At} < Ar after the first /2 pulse (see Fig. 16).
Assuming for instance that all rotations are performed around the y’ axis of the
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Bloch sphere, the effect of this & pulse is to change rapidly the phase of the spin
from ¢ = 2w AvAt to ¢ = m — 2x AvAty. Then, the phase grows again by an
amount 2t Av(At — Aty) before the last /2 pulse. The probability to measure
|1) at the end of the sequence is sin?[r Av(At — 2A1)]. When At = At/2,
this probability is thus less sensitive to Av fluctuations than the Ramsey function
cos’>(m AvAt) . In other words, a 7 pulse in the middle of an echo sequence
makes the spin go a longer (resp. shorter) path along the equator when the pre-
cession speed is faster (resp. slower), so that the ending point is the same from
sequence to sequence, provided that Av is constant within a sequence. Figure 16
compares a Ramsey sequence and an echo sequence with variable At performed
at Ng = 0.52 and § = 0, where T2* is reduced to 30ns. For At = 2A1n ~ 20T,
the amplitude of the echo is still 20% of the maximum amplitude whereas the
Ramsey signal is of course zero. This result confirms that decoherence is essen-
tially due to charge noise at frequencies lower than 1/At ~ 1 MHz. Although
mapping the amplitude of the echo as a function of At for different working
points can give much information on the shape of noise spectral densities, no
complete study could be made on the sample presented here.
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Fig. 16. Comparison between a Ramsey and an echo sequence (top right and bottom right pictograms,
respectively) with a Quantronium circuit operated at the working point (Ng = 0.52,8 = 0) with a
detuning Av = 41MHz. Top panel: Ramsey fringes of the Quantronium’s switching probability
indicating a coherence time of only 30 ns. Bottom panel: Echo signal taken at fixed At = 0.5%us
as a function of Ary. Very close to At; = At/2, the amplitude of the echo is maximum and equal
to about 20% of the signal at Ar = 0. The dashed vertical line indicates Af| and points out that the
Ramsey signal has completely disappeared for the same At.
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5. Two-qubit-gates with capacitively coupled Cooper pair boxes

Being able to implement any quantum algorithms requires adding to all possible
single qubit operations a two-qubit gate such that the ensemble forms a so-called
universal set of gates [30]. Many coupling schemes of two (or more) CPBs have
been proposed to realize such 2-qubit gates. The nature of the coupling can be
either capacitive or inductive. In the first case, two CPB islands are coupled by
a capacitor, whereas in the second case, the loops of two split CPBs are coupled
by a mutual inductance or galvanically by an inductor or an additional Josephson
junction. Although ideally the coupling should be switchable and tunable, using
a constant coupling is of course simpler. In this paper, we restrict ourselves to the
constant capacitive coupling between two CPBs, which is the only scheme that
has been implemented at the time of writing.

The Hamiltonian of two CPBs indexed 1 and 2, the islands of which are cou-
pled by a capacitor Cc, is the sum of two terms (2.3) with Josephson energies in-
cluding eventually a phase term if the box is split and with Cooper pair Coulomb
energies involving now Cx =~ C; + C; + Cc, and of a coupling term

- —~ , C

Ecc(Ni = NgD)(Nz — Ng2) with Ecc ~ Ec Ecz(z—e‘;3 : .1)
Within the spin formalism and when E;/Ec < 1, Hamiltonian (5.1) is rewritten
in the pure charge state basis (|0}, , |1),1) ® (|10).2, |1)):

s 1 ~ 7 ECC ~
H(Ngi, Ng2) = —3 Ejiox1 + | (1 =2NgDE- + (1~ ZNgZ)T 071

1 . , E .
—3 {E12UX2 + [(1 —2Ng)Eqy + (1 — 2Ngl)—%] Uzz]

(5.2)

Ecc. -
+ 7621022,

where constant terms that depend only on N1 and N, have been dropped. The
coherent evolution induced by this Hamiltonian has been experimentally demon-
strated [31] with two strongly coupled (Ecc ~ Eji2) CPBs, using the fast
DC gate pulses (see section 3.1.1) to the charge co-degeneracy point Ny =
Ng> = 1/2, and using the readout technique described in section 3.2.1. A
conditional operation close to the Controlled-NOT gate has also been demon-
strated [32] with the same system. The main idea behind this experiment is to
regard the G710z, coupling as shifting the CPB2 charge degeneracy point by
a quantity that depends on the state of CPB1. Indeed, this degeneracy point is
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defined by (1 — 2Ng2)E[, + (1 — 2Ng1 F 1/2)Ecc/2 = 0. A gate 2 pulse
bringing CPB2 to the charge degeneracy when CPB1 is in state |0),, brings it
ANg = 1/2 — Ecc /4E(, away from the degeneracy when CPBI1 is in state
I1).;. According to section 3.1.1, the maximum probability of |1}, after the
pulse drops rapidly with AN,> as 1/{1 + [2E¢ ANg2/Ej]2}, so that bit 2 can be
flipped when bit 1 is in state |0).;, whereas it is almost unchanged when bit 1
is in state |1),,. Figure 17 shows the experimental results obtained by the NEC
group with such a C-NOT.

Target Control

gate-pulse-induced currents

Pulse gate 1

Ej1(GHz)

Fig. 17. Demonstration of a C-NOT-type quantum gate with two capacitively coupled CPBs by T.
Yamamoto and co-workers. Left: Scanning electron micrography of the device. The qubits are
manipulated using the fast dc pulse technique. Here, the target qubit is prepared in the pure charge
state |0).. (a) or |1). (b) whereas the control qubit is prepared with a dc pulse of constant width in
a superposition state that depends on the Josephson energy Ej of qubit 1. Finally, a gate 2 pulse
performs the CNOT as explained in the text. Right panels: Anticorrelation (a) and correlation (b)
between the two probe currents as a function of E j1. Courtesy of T. Yamamoto et al., NEC, Japan.

Another type of gate can be developed by working in the uncoupled energy
eigenbasis (|0) , |1))®(|0), , |1),) atfixed Ngi = N2 = 1/2, where (0O|N|0) =
(1)N|1) = 1/2. The Hamitonian (5.1) is now rewritten as

~ | | N ~ ~
H(Ng1, Ng2) = —Ehvmm - Ehvmzz + Kox10x2, (5.3)

with K = Ecc |1 (1N, 10),| |2 (1IN, |0),|, the corresponding matrix being

—hv K
~ [ Kv hv] 10]
fi — TR , (5.4)
[0} [ K A]
2 (100).111),101),110)
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with v = (v 4+ v2)/2 and Av = v; — vp. In the weak coupling limit defined
by Cc¢ « Cx1 2, the coupling strength K /hv between |00) and |11) is always
weak, whereas coupling strength 2K /hAv between [01) and |10) can be var-
ied by adjusting the difference between the two qubit transition frequencies. By
equating v| and vy, this coupling is maximized and [01) and |10) are simply
swapped in a time tswap = mh/2K, whereas |00) and |11) are almost un-
changed. When applying the effective coupling during tswap/2, one obtains
the so-called +/i SWA P gate, which entangles |01) and |10} in a simple and ef-
ficient way and which forms a universal set of gates when complemented with
1-qubit operations. Moreover, the Gx|Gx» nature of the coupling has the great
advantage of conserving the property of a vanishing random dephasing at the
optimal manipulation point. An experiment aiming at testing such an ViSWAP
gate prototype with two capacitively coupled Quantroniums is currently in prepa-
ration.

6. Conclusions

As anticipated in 1995 immediately after the first successful characterization of
a Cooper pair box [7], this device has been shown to have sufficiently good
quantum properties to be used for building quantum bit prototypes. In less
than ten years, two different schemes for driving the quantum state of a CPB
and three very different readouts were developed and tested in several laborato-
ries [16, 17,20, 25]. Spectroscopy and coherent free and driven quantum evolu-
tion were demonstrated over times ranging from a few nanoseconds up to about
a microsecond. Other Josephson qubits were also able to reach comparable
results and Josephson qubits should now be considered as a single family, the
sub-families having only historical justifications. The research community in-
volved in the development of Josephson qubits has made great progress in un-
derstanding how decoherence occurs in electrical circuits and “quantum elec-
trical engineering” was really born. The concept of optimal manipulation and
measuring points of such circuits could for instance be formulated and experi-
mentally tested. Moreover, experimental protocols for characterizing decohering
effects and decoherence sources are continuously improving. With the devel-
opment of more complex manipulations of Josephson qubits, methods to limit
decoherence such as NMR-like echoes and spin locking have already been or are
about to be tested. Preliminary experiments on two coupled CPB-based-qubits
have demonstrated in 2003 a first solid-state-two-qubit-gate prototype. Never-
theless, the route towards a real quantum processor incorporating, for instance,
quantum error correcting circuits is still long. A good quantum-non-demolition
single-shot-readout is still lacking, the precision of qubit manipulations is still
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weak compared to that achieved in quantum optics, and coherence times must
be increased by one or two orders of magnitude to start implementing simple al-
gorithms. Finally, the scalability of Josephson qubits is still to be demonstrated.
To conclude, although we do not think that any serious prediction can be made
about the future existence or not of a (Josephson) Quantum computer, we are con-
vinced that developing Josephson qubits is a very valuable program of research
that paves the way towards a truly quantum electronics and toward machines in
which quantum physics will manifest itself at a more “macroscopic” scale.
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