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1. Introduction 

1.1. The problem of implementing a quantum computer 

The theory of information has been revolutionized by the discovery that quan- 
tum algorithms can run exponentially faster than their classical counterparts, and 
by the invention of quantum error-correction protocols [1]. These fundamen- 
tal breakthroughs have lead scientists and engineers to imagine building entirely 
novel types of information processors. However, the construction of a computer 
exploiting quantum- rather than classical - principles represents a formidable 
scientific and technological challenge. While quantum bits must be strongly 
inter-coupled by gates to perform quantum computation, they must at the same 
time be completely decoupled from external influences, except during the write, 
control and readout phases when information must flow in and out of the quantum 
computer. This difficulty does not exist for conventional (classical) bits, which 
follow irreversible dynamics that damp the noise of the environment. 

Most proposals for implementing a quantum computer have been based on 
qubits constructed from microscopic degrees of freedom: electron or nuclear 
spin, atomic transition dipoles and so on (see other lectures in this book). These 
degrees of freedom are naturally very well isolated from their environment, and 
hence decohere very slowly. The main challenge of these implementations is 
enhancing the inter-qubit coupling to the level required for fast gate operations 
without introducing decoherence from parasitic environmental modes and noise. 

In this review, we will discuss a radically different experimental approach 
based on "quantum integrated circuits," where qubits are constructed from col- 
lective electrodynamic modes of macroscopic electrical elements, rather than mi- 
croscopic degrees of freedom. An advantage of this approach is that these qubits 
have an intrinsically large electromagnetic cross-section, which implies they may 
be easily coupled together in complex topologies via simple linear electrical el- 
ements like capacitors, inductors, and transmission lines. However, strong cou- 
pling also presents a related challenge: is it possible to isolate these electrody- 
namic qubits from ambient parasitic noise while retaining open communication 
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channels for the write, control, and read operations? The main purpose of this 
article is to review the considerable progress that has been made in the past few 
years towards this goal, and to explain how new ideas about methodology and 
materials are likely to improve coherence to the threshold needed for quantum 
error correction. 

1.2. Scope of this review 

Before starting our discussion, we must warn the reader that this review is atyp- 
ical in that it is neither historical nor exhaustive. Some important works have 
not been included or are only partially covered. We have on purpose narrowed 
our focus: we adopt the point of view of an engineer trying to determine the best 
strategy for building a reliable machine with given performances. This approach 
obviously runs the risk of presenting a biased and even incorrect account of recent 
scientific results, since the optimization of a complex system is always a intricate 
process with many hidden passageways and dead-ends. We hope nevertheless 
that the following sections will at least stimulate discussions on how to harness 
the physics of quantum integrated circuits into a mature quantum information 
processing technology. 

After ending this introduction with a general presentation of quantum inte- 
grated circuits, we will first treat the simplest example of circuits, the super- 
conducting linear LC oscillator. Although it cannot lead to a useful qubit, this 
circuit allows the presentation of the circuit variables and parameters with mini- 
mal mathematical complications. We will then introduce the Josephson junction 
as the crucial non-linear, non-dissipative element. The problem of dealing with 
the fluctuations in the offset charge of the junction will lead us to the three basic 
types of superconducting qubits. After showing how their coherence is affected 
by the intrinsic noise of the junction we will embark on the discussion of how 
to design a faithful and fast readout without compromising the coherence. Issues 
associated with quantum gates will be finally dealt with. 

2. Basic features of quantum integrated circuits 

2.1. Ultra-low dissipation: superconductivity 

For an integrated circuit to behave quantum mechanically, the first requirement 
is very low dissipation. More specifically, all metallic parts need to be made 
out of a material that has negligible resistance at the qubit operating temperature 
and at the qubit transition frequency. The loss of only one energy quantum com- 
pletely spoils quantum coherence. Low temperature superconductors [2] such 
as aluminium or niobium are therefore ideal for the task of carrying quantum 
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signals. For this reason, quantum integrated circuit implementations have been 
nicknamed "superconducting qubits"l. 

2.2. Ultra-low noise : low temperature 

The degrees of freedom of the quantum integrated circuit must be cooled to 
temperatures where the typical energy kT of thermal fluctuations is much less 
that the energy quantum 11o901 associated with the transition between the states 
Iqubit=0> and Iqubit=l >. For reasons which will become clear in subsequent 
sections, this frequency for superconducting qubits is in the 5-20GHz range and 
therefore, the operating temperature temperature T must be around 20mK (Recall 
that 1K corresponds to about 20 GHz). These temperatures may be readily ob- 
tained by cooling the chip with a dilution refrigerator. Perhaps more importantly 
though, the "electromagnetic temperature" of the wires of the control and readout 
ports connected to the chip must also be cooled to these low temperatures, which 
requires careful electromagnetic filtering. Note that electromagnetic damping 
mechanisms are usually stronger at low temperatures than those originating from 
electron-phonon coupling. The techniques [3] and requirements [4] for ultra- 
low noise filtering have been known for about 20 years. From the requirements 
kT << hogol and hogOl << A, where A is the energy gap of the superconducting 
material, one must use superconducting materials with a transition temperature 
greater than about 1K. 

2.3. Non-linear, non-dissipative elements: tunneljunctions 

Quantum signal processing cannot be performed using only purely linear com- 
ponents. In quantum circuits, however, the non-linear elements must obey the 
additional requirement of being non-dissipative. Elements like PIN diodes or 
CMOS transistors are thus forbidden, even if they could be operated at ultra-low 
temperatures. 

There is only one electronic element that is both non-linear and non-dissipative 
at arbitrarily low temperatures: the superconducting tunnel junction (also known 
as a Josephson tunnel junction [5]). As illustrated in Fig. 1, this circuit element 
consists of a sandwich of two superconducting thin films separated by an insu- 
lating layer that is thin enough (typically "~lnm) to allow tunneling of discrete 
charges through the barrier. In later sections we will describe how the tunnel- 
ing of Cooper pairs creates a strong non-linear inductance, thus yielding viable 

1 In principle, other condensed phases of electrons, such as high-Tc superconductivity or the quan- 
tum Hall effect, both integer and fractional, are possible and would also lead to quantum integrated 
circuits of the general type discussed here. We do not pursue this subject further than this note, 
however, because dissipation in these new phases is, by far, not as well understood as in low-Tc 
superconductivity. 
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Fig. 1. a) Josephson tunnel junction made with two superconducting thin films; b) Schematic rep- 
resentation of a Josephson tunnel junction. The irreducible Josephson element is represented by a 
c r o s s .  

qubit energy levels. The tunnel barrier is typically fabricated from oxidation 
of the superconducting metal, which results in a reliable barrier since the oxi- 
dation process is self-terminating [6]. The materials properties of amorphous 
aluminum oxide (alumina) make it an attractive tunnel insulating layer. In part 
because of its well-behaved oxide, aluminim is the material from which good 
quality tunnel junctions are most easily fabricated, it is often said that aluminium 
is to superconducting quantum circuits what silicon is to conventional MOSFET 
circuits. Although the Josephson effect is a subtle physical effect involving a 
combination of tunneling and superconductivity, the junction fabrication process 
is relatively straightforward. 

2.4. Design and fabrication of quantum integrated circuits 

Superconducting junctions and wires are fabricated using techniques borrowed 
from conventional integrated circuits 2. Quantum circuits are typically made on 
silicon wafers using optical or electron-beam lithography and thin film deposi- 
tion. They present themselves as a set of micron-size or sub-micron-size cir- 
cuit elements (tunnel junctions, capacitors, and inductors) connected by wires or 
transmission lines. The size of the chip and elements are such that, to a large 
extent, the electrodynamics of the circuit can be analyzed using simple transmis- 
sion line equations or even a lumped element approximation. Contact to the chip 

2It is worth mentioning that chips with tens of thousands of junctions have been successfully 
fabricated for the voltage standard and for the Josephson signal processors, which are only exploiting 
the speed of Josephson elements, not their quantum properties. 
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is made by wires bonded to mm-size metallic pads. The circuit can be designed 
using conventional layout and classical simulation programs. 

Thus, many of the design concepts and tools of conventional electronics can 
be directly applied to quantum circuits. Nevertheless, there are still important 
differences between conventional and quantum circuits at the conceptual level. 

2.5. Integrated circuits that obey macroscopic quantum mechanics 

At the conceptual level, conventional and quantum circuits differ in that, in the 
former, the collective electronic degrees of freedom such as currents and volt- 
ages are classical variables, whereas in the latter, these degrees of freedom must 
be treated by quantum operators which do not necessarily commute. A more 
concrete way of presenting this rather abstract difference is to say that a typical 
electrical quantity, such as the charge on the plates of a capacitor, can be thought 
of as a simple number is conventional circuits, whereas in quantum circuits, the 
charge on the capacitor must be represented by a wave function giving the prob- 
ability amplitude of all charge configurations. For example, the charge on the 
capacitor can be in a superposition of states where the charge is both positive and 
negative at the same time. Similarly the current in a loop might be flowing in two 
opposite directions at the same time. These situations have originally been nick- 
named "macroscopic quantum effects" by Tony Leggett [7] to emphasize that 
quantum integrated circuits are displaying phenomena involving the collective 
behavior of many particles, which are in contrast to the usual quantum effects 
associated with microscopic particles such as electrons, nuclei or molecules 3. 

2.6. DiVicenzo criteria 

We conclude this section by briefly mentioning how quantum integrated circuits 
satisfy the so-called DiVicenzo criteria for the implementation of quantum com- 
putation [8]. The non-linearity of tunnel junctions is the key property ensuring 
that non-equidistant level subsystems can be implemented (criterion # 1: qubit 
existence). As in many other implementations, initialization is made possible 
(criterion #2: qubit reset) by the use of low temperature. Absence of dissipation 
in superconductors is one of the key factors in the quantum coherence of the sys- 
tem (criterion # 3: qubit coherence). Finally, gate operation and readout (criteria 
#4 and #5) are easily implemented here since electrical signals confined to and 
traveling along wires constitute very efficient coupling methods. 

3These microscopic effects determine also the properties of materials, and explain phenomena 
such as superconductivity and the Josephson effect itself. Both classical and quantum circuits share 
this bottom layer of microscopic quantum mechanics. 
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Fig. 2. Lumped element model for an electromagnetic resonator: L C oscillator. 

3. The simplest quantum circuit 

3.1. Quantum LC oscillator 

We consider first the simplest example of a quantum integrated circuit, the LC 
oscillator. Although it cannot lead to a useful qubit, this circuit allows us to de- 
scribe general key circuit variables and parameters with minimal mathematical 
complications. As shown in Fig. 2, it consists of an inductor L connected to 
a capacitor C, all metallic parts being superconducting. This simple circuit is 
the lumped-element version of a superconducting cavity or a transmission line 
resonator (for instance, the link between cavity resonators and L C circuits is ele- 
gantly discussed by Feynman [9]). The equations of motion of the LC circuit are 
those of an harmonic oscillator. It is convenient to take the position coordinate 
as being the flux ~ in the inductor, while the role of the conjugate momentum 
is played by the charge Q on the capacitor. The variables • and Q have to be 
treated as canonically conjugate quantum operators that obey [~, Q] = ih. The 
Hamiltonian of the circuit is H -- 1 ~2 /L  + 1 0 2 / C, which can be equivalently 
written as H = hwo(n + 1) where n is the number operator for photons in the 
resonator and coo - 1/v/-L--C is the resonance frequency of the oscillator. It is 
important to note that the parameters of the circuit Hamiltonian are not funda- 
mental constants of Nature. They are engineered quantities with a large range 
of possible values which can be modified easily by changing the dimensions of 
elements, a standard lithography operation. It is in this sense, in our opinion, that 
the system is unambiguously "macroscopic". The other important combination 
of the parameters L and C is the characteristic impedance Z = ~/L /C  of the 
circuit. Along with the residual resistance of the circuit and/or its radiation loss, 
both of which we can model as a series resistance R, this impedance determines 
the quality factor of the oscillation: Q = Z / R .  The theory of the harmonic os- 
cillator shows that a quantum superposition of ground state and first excited state 
decays on a time scale precisely given by 1/RC, yielding a quality factor for 
quantum coherence limited by Q. These considerations illustrate the very useful 
general link between the classical measure of dissipation and the upper limit of 
the quantum coherence time. 
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3.2. Practical considerations 

In practice, the circuit shown in Fig. 2 may be fabricated using planar com- 
ponents with lateral dimensions around 10#m, giving values of L and C ap- 
proximately 0.1nil and lpF, respectively, and yielding co0/2zr -~ 16GHz and 
Z0 -- 10f2. If we use aluminium, a good BCS superconductor with transition 
temperature of 1.1K and a gap A /e  _~200# V, dissipation from the breaking of 
Cooper pairs will begin at frequencies greater than 2 A / h  _~ 100GHz. The 
residual resistivity of a BCS superconductor decreases exponentially with the in- 
verse of temperature and linearly with frequency, as shown by the Mattis-Bardeen 

hco (MB) formula p (co) ~ P0 ~-~-7 exp ( - A / k s T )  [10], where P0 is the resistivity of 
the metal in the normal state (we are treating here the case of the so-called "dirty" 
superconductor [ 11 ], which is well adapted to thin film systems). According to 
MB, the intrinsic losses of the superconductor, at the temperature and frequency 
(typically 20mK and 20GHz) characterizing the qubit dynamics, can be safely 
neglected. However, we must warn the reader that the intrisinsic losses in the 
superconducting material do not exhaust, by far, the causes of dissipation, even 
if very high quality factors have been demonstrated in superconducting cavity 
experiments [ 12]. 

3.3. Matching to the vacuum impedance: a useful feature, not a bug 

Although the intrisinsic dissipation of superconducting circuits can be made very 
small, losses are in general governed by the coupling of the circuit with the elec- 
tromagnetic environment that is present in the form of write, control and readout 
lines. These lines (which we also refer to as ports) have a characteristic propaga- 
tion impedance Zc ~- 50f2, which is constrained to be a fraction of the impedance 
of the vacuum Zvac -- 377f2. It is thus easy to see that our LC circuit, with a char- 
acteristic impedance of Z0 = 10f2, tends to be rather well impedance-matched 
to any pair of leads. This circumstance occurs very frequently in circuits, and 
almost never in microscopic systems such as atoms which interact very weakly 
with electromagnetic radiation 4. Matching to Zvac is a useful feature because it 
allows strong coupling for writing, reading, and logic operations. As we men- 
tioned earlier, the challenge with quantum circuits is to isolate them from para- 
sitic degrees of freedom. The major  task of this review is to explain how this 
has been achieved so far and what level of isolation is attainable. 

4The impedance of an atom can be crudely seen as being given by the impedance quantum RK - - -  

h/e 2. We live in a universe where the ratio Zvac/2RK, also known as the fine structure constant 
1/137.0, is a small number. 
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3.4. The consequences of  being macroscopic 

While our example shows that quantum circuits can be mass-produced by stan- 
dard microfabrication techniques and that their parameters can be easily engi- 
neered to reach some optimal condition, it also points out evident drawbacks of 
being macroscopic for qubits. 

The engineered quantities L and C can be written as 

L = L sta t  + A L  (t) (3.1) 
C = C stat + A C (t) 

a) The first term on the right-handside denotes the static part of the parame- 
ter. It has statistical variations: unlike atoms whose transition frequencies in 
isolation are so reproducible that they are the basis of atomic clocks, circuits will 
always be subject to parameter variations from one fabrication batch to another. 
Thus prior to any operation using the circuit, the transition frequencies and cou- 
pling strength will have to be determined by "diagnostic" sequences and then 
taken into account in the algorithms. 

b) The second term on the right-handside denotes the time-dependent fluctua- 
tions of the parameter. It describes noise due to residual material defects moving 
in the material of the substrate or in the material of the circuit elements them- 
selves. This noise can affect for instance the dielectric constant of a capacitor. 
The low frequency components of the noise will make the resonance frequency 
wobble and contribute to the dephasing of the oscillation. Furthermore, the fre- 
quency component of the noise at the transition frequency of the resonator will 
induce transitions between states and will therefore contribute to energy relax- 
ation. 

Let us stress that statistical variations and noise are not problems affecting 
superconducting qubit parameters only. For instance when several atoms or ions 
are put together in microcavities for gate operation, patch potential effects lead 
to expressions similar in form to Eq. 3.1 for the parameters of the hamiltonian, 
even if the isolated single qubit parameters are fluctuation-free. 

3.5. The need for  non-linear elements 

Not all aspects of quantum information processing using quantum integrated cir- 
cuits can be discussed within the framwork of the LC circuit which lacks an 
important ingredient: non-linearity. In the harmonic oscillator, all transitions 
between neighbouring states are degenerate as a result of the parabolic shape 
of the potential. In order to have a qubit, the transition frequency between 
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states Iqubit=0> and Iqubit=l > must be sufficiently different from the transi- 
tion between higher-lying eigenstates, in particular 1 and 2. Indeed, the maxi- 
mum number of 1-qubit operations that can be performed coherently scales as 
Q01 Iw01 -- 09121/O)01 where Q01 is the quality factor of the 0 --~ 1 transition. 
Josephson tunnel junctions are crucial for quantum circuits since they have a 
strongly non-parabolic, inductive potential energy. 

4. The Josephson non-linear  inductance 

At low temperatures, and at the low voltages and low frequencies corresponding 
to quantum information manipulation, the Josephson tunnel junction behaves as 
a pure non-linear inductance (Josephson element) in parallel with the capacitance 
corresponding to the parallel plate capacitor formed by the two overlapping films 
of the junction (Fig. l b). This minimal, yet precise model, allows arbitrary 
complex quantum circuits to be analysed by a quantum version of conventional 
circuit theory. Even though the tunnel barrier is a layer of order ten atoms thick, 
the value of the Josephson non-linear inductance is very robust against static 
disorder, just like an ordinary inductance- such as the one considered in section 
3 - is very insensitive to the position of each atom in the wire. We refer to [ 13] 
for a detailed discussion of this point. 

4.1. Constitutive equation 

Let us recall that a linear inductor, like any electrical element, can be fully charac- 
terized by its constitutive equation. Introducing a generalization of the ordinary 
magnetic flux, which is only defined for a loop, we define the branch flux of 
an electric element  by ~p(t) - f'-oo V ( t l )d t l ,  where V (t) is the space integral 
of the electric field along a current line inside the element. In this language, the 
current I (t) flowing through the inductor is proportional to its branch flux ~(t): 

1 
I (t) - ~ ( t )  (4.1) 

Note that the generalized flux ~(t)  can be defined for any electric element 
with two leads (dipole element), and in particular for the Josephsonjunction, even 
though it does not resemble a coil. The Josephson element behaves inductively, 
as its branch flux-current relationship [5] is: 

I (t) - I0 sin [2zr~(t) /~0] (4.2) 

This inductive behavior is the manifestation, at the level of collective electrical 
variables, of the inertia of Cooper pairs tunneling across the insulator (kinetic 
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inductance). The discreteness of Cooper pair tunneling causes the periodic flux 
dependence of the current, with a period given by a universal quantum constant 
~0, the superconducting flux quantum h/2e. The junction parameter I0 is called 
the critical current of the tunnel element. It scales proportionally to the area of 
the tunnel layer and diminishes exponentially with the tunnel layer thickness. 
Note that the constitutive relation Eq. 4.2 expresses in only one equation the 
two Josephson relations [5]. This compact formulation is made possible by the 
introduction of the branch flux. 

The purely sinusoidal form of the constitutive relation Eq. 4.2 can be traced 
to the perturbative nature of Cooper pair tunneling in a tunnel junction. Higher 
harmonics can appear if the tunnel layer becomes very thin, though their presence 
would not fundamentally change the discussion presented in this review. The 
quantity 2zr~( t ) /~0  = ~ is called the gauge-invariant phase difference accross 
the junction (often abridged into "phase"). It is important to realize that at the 
level of the constitutive relation of the Josephson element, this variable is nothing 
else than an electromagnetic flux in dimensionless units. In general, we have 

0 = 6 mod 2rr 

where 0 is the phase difference between the two superconducting condensates on 
both sides of the junction. This last relation expresses how the superconducting 
ground state and electromagnetism are tied together. 

4.2. Other forms of the parameter describing the Josephson non-linear induc- 
tance 

The Josephson element is also often described by two other parameters, each 
of which carry exactly the same information as the critical current. The first 
one is the Josephson effective inductance L j O  = qgo/Io, where qg0 = ~0/2zr is 
the reduced flux quantum. The name of this other form becomes obvious if we 
expand the sine function in Eq. 4.2 in powers of • around • = 0. Keeping 
the leading term, we have I = ~ / L j o .  Note that the junction behaves for small 
signals almost as a point-like kinetic inductance: a 100nm× 100nm area junction 
will have a typical inductance of 100nil, whereas the same inductance is only 
obtained magnetically with a loop of about lcm in diameter. More generally, it 
is convenient to define the phase-dependent Josephson inductance 

L j (6) -- cos 3 

Note that the Josephson inductance not only depends on 6, it can actually 
become infinite or negative! Thus, under the proper conditions, the Josephson 
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Fig. 3. Sinusoidal current-flux relationship of a Josephson tunnel junction, the simplest non-linear, 
non-dissipative electrical element (solid line). Dashed line represents current-flux relationship for a 
linear inductance equal to the junction effective inductance. 

element can become a switch and even an active circuit element, as we will see 
below. 

The other useful parameter is the Josephson energy E j  = ~0010. If we compute 
the energy stored in the junction as E (t) -- f__t / (tl) V (tl) dtl, we find E (t) -- 
- E j  cos [27r • (t) / ~0]. In contrast with the parabolic dependence on flux of the 
energy of an inductor, the potential associated with a Josephson element has the 
shape of a cosine washboard. The total height of the corrugation of the washboard 
is 2Ej. 

4.3. Tuning the Josephson element 

A direct application of the non-linear inductance of the Josephson element is 
obtained by splitting a junction and its leads into 2 equal junctions, such that the 
resulting loop has an inductance much smaller the Josephson inductance. The 
two smaller junctions in parallel then behave as an effective junction [ 14] whose 
Josephson energy varies with ~ext, the magnetic flux externally imposed through 
the loop: 

Ej (~ext) : Ej cos (Tr~ext/~o) (4.3) 

Here, E j  the total Josephson energy of the two junctions. The Josephson energy 
can be modulated in a similar fashion by applying a magnetic field in the plane 
parallel to the tunnel layer. 

5. The quantum isolated Josephson junction 

5.1. Form of the hamiltonian 

If we leave the leads of a Josephson junction unconnected, we obtain the simplest 
example of an non-linear electrical resonator. In order to analyse its quantum dy- 
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namics, we apply the prescriptions of quantum circuit theory briefly summarized 
in Appendix 1. Choosing a representation privileging the branch variables of the 
Josephson element, the momentum corresponds to the charge Q = 2eN having 
tunneled through the element and the canonically conjugate position is the flux 

= qg00 associated with the superconducting phase difference across the tunnel 
layer. Here, N and 0 are treated as operators that obey [0, N] = i. It is impor- 
tant to note that the operator N has integer eigenvalues whereas the phase 0 is 
an operator corresponding to the position of a point on the unit circle (an angle 
modulo 2zr). 

By eliminating the branch charge of the capacitor, we obtain the hamiltonian 

H -- E c j  ( N  - Qr /2e )  2 - E j  cos 0 (5.1) 

(2e) 2 where E c  j -- 7 - C  is the Coulomb charging energy corresponding to one Cooper 
pair on the junction capacitance C j and where Qr is the residual offset charge 
on the capacitor. 

One may wonder how the constant Qr got into the hamiltonian, since no such 
term appeared in the corresponding L C  circuit in section 3. The continuous 
charge Qr is equal to the charge that pre-existed on the capacitor when it was 
wired with the inductor. Such offset charge is not some nit-picking theoretical 
construct. Its physical origin is a slight difference in work function between 
the two electrodes of the capacitor and/or an excess of charged impurities in the 
vicinity of one of the capacitor plates relative to the other. The value of Qr 
is in practice very large compared to the Cooper pair charge 2e, and since the 
hamiltonian 5.1 is invariant under the transformation N ~ N 4- 1, its value can 
be considered completely random. 

Such residual offset charge also exists in the LC circuit. However, we did 
not include it in our description of section 3 since a time-independent Qr does 
not appear in the dynamical behavior of the circuit: it can be removed from the 
hamiltonian by performing a trivial canonical transformation leaving the form of 
the hamiltonian unchanged. 

It is not possible, however, to iron this constant out of the isolated junction 
hamiltonian 5.1 because the potential is not quadratic in 0. The parameter Qr 
plays a role here similar to the vector potential appearing in the hamiltonian of 
an electron in a magnetic field. 

5.2. Fluctuations o f  the parameters o f  the hamiltonian 

The hamiltonian 5.1 thus depends on three parameters which, following our dis- 
cussion of the L C oscillator, we write as 
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Qr  --  o stat + A Qr  (t) 

E c  ps ta t  = ~c +A E c ( t )  
K, stat Ej  = ,~j + A E j  (t) 

(5.2) 

in order to distinguish the static sample-to-sample variation resulting from fab- 
rication irreproducibility from the time-dependent fluctuations. While 0 stat can 

~ - , r  

be considered fully random (see above discussion), E~ tat and ESj tat can generally 
be adjusted to a precision better than 20%. The relative fluctuations A Qr (t)/2e 
and A Ej  ( t ) / E j  are found to have a 1/ f  power spectral density with a typi- 
cal standard deviations at 1Hz roughly of order 10-3Hz -1/2 and 10-SHz -1/2, 
respectively, for a junction with a typical area of 0.01/zm 2 [15]. The noise ap- 
pears to be produced by independent two-level fluctuators [16]. The relative 
fluctuations AEc ( t ) /Ec  are much less known, but the behavior of some glassy 
insulators at low temperatures might lead us to expect also a 1 / f  power spectral 
density, but probably with a weaker intensity than those of A E j  ( t ) /E j .  We 
refer to the 3 noise terms in Eq.5.2 as offset charge, dielectric and critical current 
noises, respectively. 

6. Why three basic types of Josephson qubits? 

The first-order problem in realizing a Josephson qubit is to suppress as much as 
possible the detrimental effect of the fluctuations of Qr, while retaining the non- 
linearity of the circuit. There are three main stategies for solving this problem and 
they lead to three fundamental basic type of qubits involving only one Josephson 
element. 

6.1. The Cooperpair box 

The simplest circuit is called the "Cooper pair box" and was first described theo- 
retically, albeit in a slightly different version than presented here, by M. Btittiker 
[ 17]. It was first realized experimentally by the Saclay group in 1997 [ 18]. Quan- 
tum dynamic in the time domain was first seen by the NEC group in 1999 [19]. 
In the Cooper pair box, the variations of the residual offset charge Qr are com- 
pensated by biasing the Josephson tunnel junction with a voltage source U in 
series with a "gate" capacitor Cg (see Fig. 4a). One can easily show that the 
hamiltonian of the Cooper pair box is 

H - Ec ( N -  Ng) 2 -  Ej  cos0 (6.1) 
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Fig. 4. a) Cooper pair box (prototypal charge qubit), b) RF-SQUID (prototypal flux qubit) and c) 
current-biased junction (prototypal phase qubit). The charge qubit and the flux qubit requires small 
junctions fabricated with e-beam lithography while the phase qubit can be fabricated with conven- 
tional optical lithography. 

EIEj 

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-~ 0 7~ 

0 

Fig. 5. Potential landscape for the phase in a Cooper pair box (thick solid line). The first few levels 
for E j / EC -- 1 and Ng -- 1/2 are indicated by thin horizontal solid lines. 

( 2 e ) 2  is the charging energy of the island of the box and Ng -- Here Ec = 2(cj+Cg) 
Qr + CgU/2e. Note that this hamiltonian has the same form as hamiltonian 
5.1. Often Ng is simply written as CgU/2e since U at the chip level will deviate 
substantially from the generator value at high-temperature due to stray emf's in 
the low-temperature cryogenic wiring. 

In Fig. 5 we show the potential in the 0 representation as well as the first few 
energy levels for Ej/Ec = 1 and Ng = 0. As shown in Appendix 2, the Cooper 
pair box eigenenergies and eigenfunctions can be calculated with special func- 
tions known with arbitrary precision, and in Fig 6 we plot the first few eigenen- 
ergies as a function of Ng for Ej/E C - - "  0.1 and Ej/Ec = 1. Thus, the Cooper 
box is to quantum circuit physics what the hydrogen atom is to atomic physics. 
We can modify the spectrum with the action of two externally controllable elec- 
trodynamic parameters: Ng, which is directly proportional to U, and E j, which 
can be varied by applying a field through the junction or by using a split junction 
and applying a flux through the loop, as discussed in section 3. These parameters 
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Fig. 6. Energy levels of the Cooper pair box as a function of Ng, for two values of Ej/Ec. As 
Ej/Ec increases, the sensitivity of the box to variations of offset charge diminishes, but so does 
the non-linearity. However, the non-linearity is the slowest function of Ej/Ec and a compromise 
advantageous for coherence can be found. 

bear some resemblance to the Stark and Zeeman fields in atomic physics. For 
the box, however much smaller values of the fields are required to change the 
spectrum entirely. 

We now limit ourselves to the two lowest levels of the box. Near the degener- 
acy point Ng = 1/2 where the electrostatic energy of the of the two charge states 
IN = 0) and IN = 1) are equal, we get the reduced hamiltonian [18,20] 

n q u b i t  --  - E z  (o'z + ScontrolO 'X) (6.2) 

where, in the limit E j / E c  << 1, Ez -- ~--~-J and X c o n t ro l  - -  2-Uf - Ng . In 
Eq. 6.2, az  and crx refer to the Pauli spin operators, with the X direction being 
chosen along the charge operator, the variable of the box we can naturally couple 
to. 

If we plot the energy of the eigenstates of 6.2 as a function of the control 
parameter Xcontrol, we obtain the universal level repulsion diagram shown in 
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Fig. 7. Universal level anticrossing found both for the Cooper pair box and the RF-SQUID at their 
"sweet spot". 

Fig. 7. Note that the minimum energy splitting is given by Ej .  Comparing 
Eq. 6.2 with the spin hamiltonian in NMR, we see that E j  plays the role of the 
Zeeman field while the electrostatic energy plays the role of the transverse field. 
Indeed we can send on the control port corresponding to U time-varying voltage 
signals in the form of NMR-type pulses and prepare arbitrary superpositions of 
states [21]. 

The expression 6.2 shows that at the "sweet spot" X c o n t ro l  ~"  0, i.e. the degen- 
eracy point Ng = ½, the qubit transition frequency is to first order insentive to the 
offset charge noise A Qr. We will discuss in the next section how an extension 
of the Cooper pair box circuit can display quantum coherence properties on long 
time scales by using this property. 

In general, circuits derived from the Cooper pair box have been nicknamed 
"charge qubits". One should not think, however, that in charge qubits, quantum 
information is encoded with charge. Both the charge N and phase 0 are quantum 
variables and they are both uncertain for a genetic quantum state. Charge in 
"charge qubits" should be understood as refering to the "controlled variable", i.e. 
the qubit variable that couples to the control line we use to write or manipulate 
quantum information. In the following, for better comparison between the three 
qubits, we will be faithful to the convention used in Eq. 6.2, namely that crx 
represents the controlled variable. 

6.2. The RF-SQUID 

The second circuit- the so-called RF-SQUID [22] - can be considered in several 
ways the dual of the Cooper pair box (see Fig. 4b). It employs a superconducting 
transformer rather than a gate capacitor to adjust the hamiltonian. The two sides 
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of the junction with capacitance C j are connected by a superconducting loop 
with inductance L. An external flux ~ext  is imposed through the loop by an 
auxiliary coil. Using the methods of Appendix 1, we obtain the hamiltonian [7] 

q2 q~2 [2e ] 
-Jr- - E j  cos (ok - ~ext )  (6.3) H -- 2Cj 2L --h- 

We are taking here as degree of freedom the integral 4~ of the voltage across the 
inductance L, i.e. the flux through the superconducting loop, and its conjugate 
variable, the charge q on the capacitance C j ;  [4~, q] - i h. Note that in this 
representation, the phase 0, corresponding to the branch flux across the Josephson 
element, has been eliminated. Note also that the flux q~, in contrast to the phase 
0, takes its values on a line and not on a circle. Likewise, its conjugate variable 
q, the charge on the capacitance, has continuous eigenvalues and not integer 
ones like N. Note that we now have three adjustable energy scales: E j ,  E c  j = 
(2e)2and EL -- ~2 
2 C j  2 L  " 

The potential in the flux representation is schematically shown in Fig. 8 to- 
gether with the first few levels, which have been seen experimentally for the 
first time by the SUNY group [23]. Here, no analytical expressions exist for the 
eigenvalues and the eigenfunctions of the problem, which has two aspect ratios: 
E j / E c j  and k = L j / L -  1. 

Whereas in the Cooper box the potential is cosine-shaped and has only one 
well since the variable 0 is 2re-periodic, we have now in general a parabolic 
potential with a cosine corrugation. The idea here for curing the detrimental 
effect of the offset charge fluctuations is very different than in the box. First 
of all ~rOStat has been neutralized by shunting the 2 metallic electrodes of the 
junction by the superconducting wire of the loop. Then, the ratio E j / E c j  is 
chosen to be much larger than unity. This tends to increase the relative strength 
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of quantum fluctuations of q, making offset charge fluctuations A Qr small in 
comparison. The resulting loss in the non-linearity of the first levels is compen- 
sated by taking ~ close to zero and by flux-biasing the device at the half-flux 
quantum value ~ e x t  --- ~0/2. Under these conditions, the potential has two de- 

342 generate wells separated by a shallow barrier with height E8 -- --U Ej .  This 
corresponds to the degeneracy value Ng = 1/2 in the Cooper box, with the in- 
ductance energy in place of the capacitance energy. At ~ e x t  = ~0/2, the two 
lowest energy levels are then the symmetric and antisymmetric combinations of 
the two wavefunctions localized in each well, and the energy splitting between 
the two states can be seen as the tunnel splitting associated with the quantum 
motion through the potential barrier between the two wells, bearing close resem- 
blance to the dynamics of the ammonia molecule. This splitting E s depends 
exponentially on the barrier height, which itself depends strongly on Ej .  We 
have Es -- ri~/EBEcj exp ( - ~ / E B / E c j )  where the numbers rl and ~ have to 
be determined numerically in most practical cases. The non-linearity of the first 
levels results thus from a subtle cancellation between two inductances: the super- 
conducting loop inductance L and the junction effective inductance -L J0 which 
is opposed to L n e a r  di)ex  t - -  ~0/2. However, as we move away from the degen- 
eracy point ¢JPext --- ~0/2, the splitting 2 E ,  between the first two energy levels 

~ o  

varies linearly with the applied flux E ,  -- ~" ~ (N~, - 1/2). Here the parameter 
N ,  = ~ e x t / ~ 0 ,  also called the flux frustration, plays the role of the reduced 
gate charge Ng. The coefficient ~" has also to be determined numerically. We are 
therefore again, in the vicinity of the flux degeneracy point dPex t - -  (I)0/2 and for 
E j / E c  j >> 1, in presence of the universal level repulsion behavior (see Fig. 7) 
and the qubit hamiltonian is again given by 

nqubit = - E z  (az + XcontrolffX) (6.4) 

wherenowEz--E J2andXcontro --2 ( -No) Thequbitsderive  rom 
this basic circuit [24, 32] have been nicknamed "flux qubits". Again, quantum in- 
formation is not directly represented here by the flux 4~, which is as uncertain for a 
general qubit state as the charge q on the capacitor plates of the junction. The flux 
4~ is the system variable to which we couple when we write or control information 
in the qubit, which is done by sending current pulses on the primary of the RF- 
SQUID transformer, thereby modulating N~, which itself determines the strength 
of the pseudo-field in the X direction in the hamiltonian 6.4. Note that the para- 
meters Es, E~, and N~ are all influenced to some degree by the critical current 
noise, the dielectric noise and the charge noise. Another independent noise can 
also be present, the noise of the flux in the loop, which is not found in the box 
and which will affect only N , .  Experiments on DC-SQUIDS [14] have shown 
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that this noise, in adequate conditions, can be as low as lO-8(h/2e)/Hz -1/2 at 
a few KHz. However, experimental results on flux qubits (see below) seem to 
indicate that larger apparent flux fluctuations are present, either as a result of flux 
trapping or critical current fluctuations in junctions implementing inductances. 

6.3. Current-biased junction 

The third basic quantum circuit biases the junction with a fixed DC-current source 
(Fig. 7c). Like the flux qubit, this circuit is also insensitive to the effect of 
offset charge and reduces the effect of charge fluctuations by using large ratios 
of E j / E c  j. A large non-linearity in the Josephson inductance is obtained by 
biasing the junction at a current I very close to the critical current. A current 
bias source can be understood as arising from a loop inductance with L ~ c~ 
biased by a flux • --+ ~ such that I - ~ / L .  The Hamiltonian is given by 

H -- E c j p 2  _ I q9o8- Io~Po cos 8,  (6.5) 

where the gauge invariant phase difference operator 6 is, apart from the scale 
factor qg0, precisely the branch flux across Cj.  Its conjugate variable is the charge 
2ep on that capacitance, a continuous operator. We have thus [8, p] - i. The 
variable 8, like the variable 4~ of the RF-SQUID, takes its value on the whole real 
axis and its relation with the phase 0 is 8 rood 2zr = 0 as in our classical analysis 
of section 4. 

The potential in the 8 representation is shown in Fig. 9. It has the shape of a 
tilted washboard, with the tilt given by the ratio I /I0.  When I approaches I0, the 
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phase is 6 ~ Jr/2, and in its vicinity, the potential is very well approximated by 
the cubic form 

I0tP0 (3 - -  7 r / 2 )  3 U (6) = qgo (I0 - I) (6 - re/2) - - - ~  (6.6) 

Note that its shape depends critically on the difference I o -  I. For I < Io, there is 
a well with a barrier height AU -- (2~/-2/3)Ioq9o (1 - 1/lo) 3/2 and the classical 
oscillation frequency at the bottom of the well (so-called plasma oscillation) is 
given by 

O)p -- 
1 

~/L j ( I )C j 

1 1 1 - - ( 1 / 1 0 ) 2 1 1 / 4  
~/L JoC J 

Quantum-mechanically, energy levels are found in the well (see Fig. 11) [3] with 
non-degenerate spacings. The first two levels can be used for qubit states [25], 
and have a transition frequency o901 "~ 0.95O9p. 

A feature of this qubit circuit is built-in readout, a property missing from the 
two previous cases. It is based on the possibility that states in the cubic potential 
can tunnel through the cubic potential barrier into the continuum outside the bar- 
rier. Because the tunneling rate increases by a factor of approximately 500 each 
time we go from one energy level to the next, the population of the [1) qubit state 
can be reliably measured by sending a probe signal inducing a transition from the 
1 state to a higher energy state with large tunneling probability. After tunneling, 
the particle representing the phase accelerates down the washboard, a convenient 
self-amplification process leading to a voltage 2A/e  across the junction. There- 
fore, a finite voltage V # 0 suddenly appearing across the junction just after the 
probe signal implies that the qubit was in state I1), whereas V = 0 implies that 
the qubit was in state 10). 

In practice, like in the two previous cases, the transition frequency co01/2zr 
falls in the 5-20GHz range. This frequency is only determined by material prop- 
erties of the barrier, since the product Cj L j does not depend on junction area. 
The number of levels in the well is typically AU/ho)p ,~ 4. 

Setting the bias current at a value I and calling A I the variations of the dif- 
ference I - I0 (originating either in variations of I or I0), the qubit Hamiltonian 
is given by 

h 
Hqubit = ho)010"Z + 2O9olC J AI  (crx + X trz), (6.7) 
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where X = ~/h09o1/3AU ~- 1/4 for typical operating parameters. In contrast 
with the flux and phase qubit circuits, the current-biased Josephson junction does 
not have a bias point where the 0--~ 1 transition frequency has a local minimum. 
The hamiltonian cannot be cast into the NMR-type form of Eq. 6.2. How- 
ever, a sinusoidal current signal AI  (t) ~ sin 0901 t can still produce crx rotations, 
whereas a low-frequency signal produces crz operations [26]. 

In analogy with the preceding circuits, qubits derived from this circuit and/or 
having the same phase potential shape and qubit properties have been nicknamed 
"phase qubits" since the controlled variable is the phase (the X pseudo-spin di- 
rection in hamiltonian 6.7). 

6.4. Tunability versus sensitivity to noise in control parameters 

The reduced two-level hamiltonians Eqs. 6.2,6.4 and 6.7 have been tested thor- 
oughly and are now well-established. They contain the very important parametric 
dependence of the coefficient of crx, which can be viewed on one hand as how 
much the qubit can be tuned by an external control parameter, and on the other 
hand as how much it can be dephased by uncontrolled variations in that parame- 
ter. It is often important to realize that even if the control parameter has a very 
stable value at the level of room-temperature electronics, the noise in the electri- 
cal components relaying its value at the qubit level might be inducing detrimental 
fluctuations. An example is the flux through a superconducting loop, which in 
principle could be set very precisely by a stable current in a coil, and which in 
practice often fluctuates because of trapped flux motion in the wire of the loop 
or in nearby superconducting films. Note that, on the other hand, the two-level 
hamiltonian does not contain the non-linear properties of the qubit, and how they 
conflict with its intrinsic noise, a problem which we discuss in the next subsec- 
tion. 

6.5. Non-linearity versus sensitivity to intrinsic noise 

The three basic quantum circuit types discussed above illustrate a general ten- 
dency of Josephson qubits. If we try to make the level structure very non-linear, 
i.e. 1090J - 09121 >> o901, we necessarily expose the system sensitively to at least 
one type of intrinsic noise. The flux qubit is contructed to reach a very large non- 
linearity, but is also maximally exposed, relatively speaking, to critical current 
noise and flux noise. On the other hand, the phase qubit starts with a relatively 
small non-linearity and acquires it at the expense of a precise tuning of the differ- 
ence between the bias current and the critical current, and therefore exposes itself 
also to the noise in the latter. The Cooper box, finally, acquires non-linearity at 
the expense of its sensitivity to offset charge noise. The search for the optimal 
qubit circuit involves therefore a detailed knowledge of the relative intensities 

468 M. H. Devoret and J. M. Martinis 

of the various sources of noise, and their variations with all the construction pa- 
rameters of the qubit, and in particular-  this point is crucial - the properties 
of the materials involved in the tunnel junction fabrication. No such in-depth 
of knowledge exists at the time of this writing and one can only make educated 
guesses. 

The qubit optimization problem is also further complicated by the necessity 
to readout quantum information, which we address just after reviewing the rela- 
tionships between the intensity of noise and the decay rates of quantum informa- 
tion. 

7. Qubit relaxation and decoherence 

A generic quantum state of a qubit can be represented as a unit vector S pointing 
on a sphere, the so-called Bloch sphere. One distinguishes two broad classes of 
errors. The first one corresponds to the tip of the Bloch vector diffusing along a 
meridian, i.e. a great circle passing through the poles (latitude fluctuations). This 
process is called energy relaxation or state-mixing. The second class corresponds 
to the tip of the Bloch vector diffusing along a parallel, i.e. a circle perpendicular 
to the line joining the two poles (longitude fluctuations). This process is called 
dephasing or decoherence. 

In Appendix 2 we define precisely these rates and show that they are directly 
proportional to the power spectral densities of the noises entering in the parame- 
ters of the hamiltonian of the qubit. More precisely, we find that the decoherence 
rate is proportional to the total spectral density of the quasi-zero-frequency noise 
in the qubit frequency. The relaxation rate, on the other hand, is proportional to 
the total spectral density near the qubit frequency of the noise in the field perpen- 
dicular to the eigenaxis of the qubit. 

In principle, the expressions for the relaxation and decoherence rate could lead 
to a ranking of the various qubit circuits: from their reduced spin hamiltonian, 
one can find with what coefficient each basic noise source contributes to the var- 
ious spectral densities entering in the rates. One could then optimize the various 
parameters of the qubit to greatly reduce its sensitivity to noise. However, before 
discussing this question further, we must realize that the readout itself can pro- 
vide substantial additional noise sources for the qubit. Therefore, the design of 
a qubit circuit that maximizes the number of coherent gate operations is a subtle 
optimization problem which must treat in parallel both the intrinsic noises of the 
qubit and the back-action noise of the readout. 
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8. Readout of superconducting qubits 

8.1. Formulation of the readout problem 

We have examined so far the various basic circuits for qubit implementation and 
their associated methods to write and manipulate quantum information. Another 
important task quantum circuits must perform is the readout of that information. 
As we mentioned earlier, the difficulty of the readout problem is to open a cou- 
pling channel to the qubit for extracting information without at the same time 
submitting it to noise. 

Ideally, the readout part of the circuit-  referred to in the following simply as 
"readout"- should include both a switch, which defines an "OFF" and an "ON" 
phase, and a state measurement device. During the OFF phase, where reset and 
gate operations take place, the measurement device should be completely decou- 
pied from the qubit degrees of freedom. During the ON phase, the measurement 
device should be maximally coupled to a qubit variable that distinguishes the 0 
and the 1 state. However, this condition is not sufficient. The back-action of the 
measurement device during the ON phase should be weak enough not to relax 
the qubit [27]. 

The readout can be characterized by 4 parameters. The first one describes the 
sensitivity of the measuring device while the next two describes its back-action, 
factoring in the quality of the switch (see Appendix 3 for their definition): 

i) the measurement time rm defined as the time taken by the measuring 
device to reach a signal-to-noise ratio of 1 in the determination of the state. 

ii) the energy relaxation time F~ N of the qubit in the ON state. 
iii) the coherence decay rate F ° e e  of the qubit information in the OFF 

state. 
iv) the dead time td needed to reset the measuring device after a qubit 

measurement. The readout is usually perturbed by the energy expenditure asso- 
ciated with producing a signal strong enough for external detection. 

Simultaneously minimizing these parameters to improve readout performance 
cannot be done without running into conflicts. An important quantity to opti- 
mize is the readout fidelity. By construction, at the end of the ON phase, the 
readout should have reached one of two classical states: 0c and lc, the outcomes 
of the measurement process. The latter can be described by 2 probabilities: the 
probability POOc(Pllc) that starting from the qubit state 10) (11)) the measure- 
ment yields 0c(lc ). The readout fidelity (or discriminating power) is defined 
as F -- P00c + Pllc -- 1. For a measuring device with a signal-to-noise ratio 
increasing like the square of measurement duration r, we would have, if back- 
action could be neglected, F = erf (2-1/2"c/'Cm). 
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8.2. Requirements and general strategies 

The fidelity and speed of the readout, usually not discussed in the context of quan- 
tum algorithms because they enter marginally in the evaluation of their complex- 
ity, are actually key to experiments studying the coherence properties of qubits 
and gates. A very fast and sensitive readout will gather at a rapid pace infor- 
mation on the imperfections and drifts of qubit parameters, thereby allowing the 
experimenter to design fabrication strategies to fight them or even correct them 
in real time. 

We are thus mostly interested in "single-shot" readouts [27], for which F is 
order unity, as opposed to schemes in which a weak measurement is performed 
continuously [28]. If F << 1, of order F -2 identical preparation and readout 
cycles need to be performed to access the state of the qubit. The condition for 
"single-shot" operation is 

['l ONrm < 1 

The speed of the readout, determined both by rm and td, should be sufficiently 
fast to allow a complete characterization of all the properties of the qubit before 
any drift in parameters occurs. With sufficient speed, the automatic correction of 
these drifts in real time using feedback will be possible. 

Rapidly pulsing the readout on and off with a large decoupling amplitude such 
that 

F~FFT2-- 1 << 1 

requires a fast, strongly non-linear element, which is provided by one or more 
auxiliary Josephson junctions. Decoupling the qubit from the readout in the OFF 
phase requires balancing the circuit in the manner of a Wheatstone bridge, with 
the readout input variable and the qubit variable corresponding to 2 orthogonal 
electrical degrees of freedom. Finally, to be as complete as possible even in pres- 
ence of small asymmetries, the decoupling also requires an impedance mismatch 
between the qubit and the dissipative degrees of freedom of the readout. In the 
next subsection, we discuss how these general ideas have been implemented in 
2nd generation quantum circuits. The examples we have chosen all involve a 
readout circuit which is built-in the qubit itself to provide maximal coupling dur- 
ing the ON phase, as well as a decoupling scheme which has proven effective for 
obtaining long decoherence times. 

8.3. Phase qubit: tunneling readout with a DC-SQUID on-chip amplifier 

The simplest example of a readout is provided by a system derived from the 
phase qubit (See Fig. 10). In the phase qubit, the levels in the cubic potential 
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Fig. 10. Phase qubit implemented with a Josephson junction in a high-inductance superconducting 
loop biased with a flux sufficiently large that the phase across the junction sees a potential analogous 
to that found for the current-biased junction. The readout part of the circuit is an asymmetric hys- 
teretic SQUID which is completely decoupled from the qubit in the OFF phase. Isolation of the qubit 
both from the readout and control port is obtained through impedance mismatch of transformers. 

are metastable and decay in the continuum, with level n + 1 having roughly a 
decay rate l-'n+l 500 times faster than the decay l"n of level n. This strong level 
number dependence of the decay rate leads naturally to the following readout 
scheme: when readout needs to be performed, a microwave pulse at the transi- 
tion frequency o912 (or better at o913) transfers the eventual population of level 1 
into level 2, the latter decaying rapidly into the continuum, where it subsequently 
loses energy by friction and falls into the bottom state of the next corrugation of 
the potential (because the qubit junction is actually in a superconducting loop of 
large but finite inductance, the bottom of this next corrugation is in fact the ab- 
solute minimum of the potential and the particle representing the system can stay 
an infinitely long time there). Thus, at the end of the readout pulse, the sytem has 
either decayed out of the cubic well (readout state lc) if the qubit was in the I1) 
state or remained in the cubic well (readout state 0c) if the qubit was in the 10) 
state. The DC-SQUID amplifier is sensitive enough to detect the change in flux 
accompanying the exit of the cubic well, but the problem is to avoid sending the 
back-action noise of its stabilizing resistor into the qubit circuit. The solution to 
this problem involves balancing the SQUID loop in such a way, that for readout 
state 0c, the small signal gain of the SQUID is zero, whereas for readout state lc, 
the small signal gain is non-zero [16]. This signal dependent gain is obtained by 
having 2 junctions in one arm of the SQUID whose total Josephson inductance 
equals that of the unique junction in the other arm. Finally, a large impedance 
mismatch between the SQUID and the qubit is obtained by a transformer. The fi- 
delity of such readout is remarkable: 95% has been demonstrated. In Fig. 11, we 
show the result of a measurement of Rabi oscillations with such qubit+readout. 
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Fig. 11. Rabi oscillations observed for the qubit of Fig. 10. 

8.4. Cooper-pair box with non-linear inductive readout: the "Quantronium" 
circuit 

The Cooper-pair box needs to be operated at its "sweet spot" (degeneracy point) 
where the transition frequency is to first order insensitive to offset charge fluc- 
tuations. The "Quantronium" circuit presented in Fig. 12 is a 3-junction bridge 
configuration with two small junctions defining a Cooper box island, and thus 
a charge-like qubit which is coupled capacitively to the write and control port 
(high-impedance port). There is also a large third junction, which provides a 
non-linear inductive coupling to the read port. When the read port current I is 
zero, and the flux through the qubit loop is zero, noise coming from the read 
port is decoupled from the qubit, provided that the two small junctions are iden- 
tical both in critical current and capacitance. When I is non-zero, the junction 
bridge is out of balance and the state of the qubit influences the effective non- 
linear inductance seen from the read port. A further protection of the impedance 
mismatch type is obtained by a shunt capacitor across the large junction: at the 
resonance frequency of the non-linear resonator formed by the large junction and 
the external capacitance C, the differential mode of the circuit involved in the 
readout presents an impedance of the order of an ohm, a substantial decoupling 
from the 50f2 transmission line carrying information to the amplifier stage. The 
readout protocol involves a DC pulse [21,29] or an RF pulse [30] stimulation of 
the readout mode. The response is bimodal, each mode corresponding to a state 
of the qubit. Although the theoretical fidelity of the DC readout can attain 95%, 
only a maximum of 40% has been obtained so far. The cause of this discrepancy 
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WRITE AND T 
CONTROL PORT I 

? 

,[ READOUT 
PORT 

T 

Fig. 12. "Quantronium" circuit consisting of a Cooper pair box with a non-linear inductive read- 
out. A Wheatstone bridge configuration decouples qubit and readout variables when readout is OFF. 
Impedance mismatch isolation is also provided by additional capacitance in parallel with readout 
junction. 

is still under investigation. 
In Fig. 13 we show the result of a Ramsey fringe experiment demonstrating 

that the coherence quality factor of the quantronium can reach 25 000 at the sweet 
spot [21]. By studying the degradation of the qubit absorption line and of the 
Ramsey fringes as one moves away from the sweet spot, it has been possible to 
show that the residual decoherence is limited by offset charge noise and by flux 
noise [31 ]. In principle, the influence of these noises could be further reduced 
by a better optimization of the qubit design and parameters. In particular, the 
operation of the box can tolerate ratios of E j / E c  around 4 where the sensitivity 
to offset charge is exponentially reduced and where the non-linearity is still of 
order 15%. The quantronium circuit has so far the best coherence quality factor. 
We believe this is due to the fact that critical current noise, one dominant intrinsic 
source of noise, affects this qubit far less than the others, relatively speaking, as 
can be deduced from the qubit hamiltonians of section 6. 

8.5. 3-junction flux qubit with built-in readout 

Fig. 14 shows a third example of buit-in readout, this time for a flux-like qubit. 
The qubit by itself involves 3 junctions in a loop, the larger two of the junctions 
playing the role of the loop inductance in the basic RF-SQUID [32]. The advan- 
tage of this configuration is to reduce the sensitivity of the qubit to external flux 
variations. The readout part of the circuit involves 2 other junctions forming a 
hysteretic DC-SQUID whose offset flux depends on the qubit flux state. The crit- 
ical current of this DC-SQUID has been probed by a DC pulse, but an RF pulse 
could be applied as in another flux readout. Similarly to the two previous cases, 
the readout states lc and 0c, which here correspond to the DC-SQUID having 
switched or not, map very well the qubit states I1) and 10), with a fidelity better 
than 60%. Here also, a bridge technique orthogonalizes the readout mode, which 
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Fig. 13. Measurement of Ramsey fringes for the Quantronium. Two n/2 pulses separated by a vari- 
able delay are applied to the qubit before measurement. The frequency of the pulse is slightly detuned 
from the transition frequency to provide a stroboscopic measurement of the Larmor precession of the 
qubit. 

is the common mode of the DC-SQUID, and the qubit mode, which is coupled 
to the loop of the DC-SQUID. External capacitors provide additional protection 
through impedance mismatch. Fig. 15 shows Ramsey fringes obtained with this 
system. 

8.6. Too much on-chip dissipation can be bad: Do not stir up the dirt.t 

All the circuits above include an on-chip amplification scheme producing high- 
level signals which can be read directly by high-temperature low-noise electron- 
ics. In the second and third examples, these signals lead to non-equilibrium quasi- 
particle excitations being produced in the near vicinity of the qubit junctions. An 
elegant experiment has recently demonstrated that the presence of these excita- 
tions increases the offset charge noise [33]. More generally, one can legitimately 
worry that large energy dissipation on the chip itself will lead to an increase of the 
noises discussed in section 5.2. A broad class a new readout schemes addresses 
this question [30, 34, 35]. They are based on a purely dispersive measurement of 
a qubit susceptibility (capacitive or inductive). A probe signal is sent to the qubit. 
The signal is coupled to a qubit variable whose average value is identical in the 2 
qubit states (for instance, in the capacitive susceptibility, the variable is the island 
charge in the charge qubit at the degeneracy point). The state-dependent phase 
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Fig. 14. Three-junction flux qubit with a non-linear inductive readout. The medium-size junctions 
play the role of an inductor. Bridge configuration for nulling out back-action of readout is also 
employed here, as well as impedance mismatch provided by additional capacitance. 
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Fig. 15. Panel A: Ramsey fringes obtained for qubit of Fig. 14. Panel B: echo showing the fast 
dynamics of decoherence processes. 
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shift of the reflected signal is then amplified by a linear low-temperature ampli- 
fier and finally discriminated at high temperature against an adequately chosen 
threshold. In addition to being very thrifty in terms of energy being dissipated on 
chip, these new schemes also provide a further natural decoupling action: when 
the probe signal is off, the back-action of the amplifier is also completely shut 
off. 

9. Coupling superconducting qubits 

A priori, 3 types of coupling scheme can be envisioned: 
a) In the first type, the transition frequency of the qubits are all equal and 

the coupling between any pair is switched on using one or several junctions as 
non-linear elements [36, 37]. 

b) In the second type, the couplings are fixed, but the transition frequencies of 
a pair of qubits, originally detuned, are brought on resonance when the coupling 
between them needs to be turned on [38, 39]. 

c) In the third type, which bears close resemblance to the methods used in 
NMR [ 1 ], the couplings and the resonance frequencies of the qubits remain fixed, 
the qubits being always detuned. Being off-diagonal, the coupling elements have 
negligible action on the qubits. However, when a strong microwave field is ap- 
plied to the target and control qubits at their mean frequency, they become in 
"speaking terms" for the exchange of energy quanta and gate action can take 
place [40]. 

So far only scheme b) has been tested experimentally. 
The advantage of schemes b) and c) is that they work with purely passive re- 

active elements like capacitors and inductors which should remain very stable as 
a function of time and which also should present very little high-frequency noise. 
In a way, we must design quantum integrated circuits in the manner that vacuum 
tube radios were designed in the 50's: only 6 tubes were used for a complete 
heterodyne radio set, including the power supply. Nowadays several hundreds of 
transistors are used in a radio or any hi-fi system. In that ancient era of classi- 
cal electronics, linear elements like capacitors, inductors or resistors were "free" 
because they were relatively reliable whereas tubes could break down easily. We 
have to follow a similar path in quantum integrated circuit, the reliability issues 
having become noise minimization issues. 

10. Can coherence be improved with better materials? 

Up to now, we have discussed how, given the power spectral densities of the 
noises A Qr, A E c  and A E j ,  we could design a qubit equipped with control, 
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readout and coupling circuits. It is worthwhile to ask at this point if we could 
improve the material properties to gain in the coherence of the qubit, assuming 
all other problems like noise in the control channels and the back-action of the 
readout have been solved. A model put forward by one of us (JMM) and collabo- 
rators shed some light on the direction one would follow to answer this question. 
The 1 / f  spectrum of the materials noises suggests that they all originate from 
2-level fluctuators in the amorphous alumina tunnel layer of the junction itself, 
or its close vicinity. The substrate or the surface of the superconducting films are 
also suspect in the case of A Qr and A Ec  but their influence would be relatively 
weaker and we ignore them for simplicity. These two-level systems are supposed 
to be randomly distributed positional degrees of freedom ~i with effective spin- 
1/2 properties, for instance an impurity atom tunneling between two adjacent 
potential wells. Each two-level system is in principle characterized by 3 para- 
meters: the energy splitting hcoi, and the two coefficients Oti and fli of the Pauli 
matrix representation of ~i - -  OliO'iz -'[- fliO ' ix • The random nature of the problem 
leads us to suppose that Oe i and fli a r e  both Gaussian random variables with the 
same standard deviation Pi. By carrying a charge, the thermal and quantum mo- 

tion of ~i c a n  contribute to A Qr - -  Y ~ i  q i~ i  and A Ec  - ~ i  Ci fl2 Likewise, w---i- O'iz" 
by modifying the transmission of a tunneling channel in its vicinity, the motion 
of ~i c a n  contribute to A E j  - Y ~ i  g i ~ i .  We can further suppose that the quality 
of the material of the junction is simply characterized by a few numbers. The es- 
sential one is the density v of the transition frequencies Wi in frequency space and 
in real space, assuming a co -1 distribution (this is necessary to explain the 1 / f  
behavior) and a uniform spatial distribution on the surface of the junction. Re- 
cent experiments indicate that the parameter v is of orderl 05#m -2 (decade)- 1. 
Then, assuming a universal p independent of frequency, only one coefficient is 
needed per noise, namely, the average modulation efficiency of each fluctuator. 
Such analysis provides a common language for describing various experiments 
probing the dependence of decoherence on the material of the junction. Once the 
influence of the junction fabrication parameters (oxydation pressure and temper- 
ature, impurity contents, and so on) on these noise intensities will be known, it 
will be possible to devise optimized fabrication procedures, in the same way per- 
haps as the 1 / f  noise in C-MOS transistors has been reduced by careful material 
studies. 

11. Concluding remarks and perspectives 

The logical thread through this review of superconducting qubits has been the 
question "What is the best qubit design?". We unfortunately cannot, at present, 
conclude by giving a definitive answer to this complex optimisation problem. 
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Yet, a lot has already been achieved, and superconducting qubits are becom- 
ing serious competitors of trapped ions and atoms. The following properties of 
quantum circuits have been demonstrated: 

a) Coherence quality factors Q~ = T, pwOl can attain at least 2.104 
b) Readout and reset fidelity can be greater than 95% 
c) All states on the Bloch sphere can be addressed 
d) Spin echo techniques can null out low frequency drift of offset charges 
e) Two qubits can be coupled and RF pulses can implement gate operation 
f) A qubit can be fabricated using only optical lithography techniques 
The major problem we are facing is that these various results have not been 

obtained at the same time IN THE SAME CIRCUIT, although succesful design 
elements in one have often been incorporated into the next generation of others. 
The complete optimization of the single qubit+readout has not been achieved 
yet. However, we have presented in this review the elements of a systematic 
methodology resolving the various conflicts that are generated by all the different 
requirements. Our opinion is that, once noise sources are better characterized, an 
appropriate combination of all the known circuit design strategies for improving 
coherence, as well as the understanding of optimal tunnel layer growth conditions 
for lowering the intrinsic noise of Josephsonjunctions, should lead us to reach the 
1-qubit and 2-qubit coherence levels needed for error correction [43]. Along the 
way, good medium term targets to test overall progress on the simultaneous fronts 
of qubit coherence, readout and gate coupling are the measurement of Bell 's  
inequality violation or the implementation of the Deutsch-Josza algorithm, both 
of which requiting the simultaneous satisfaction of properties a)-e). 
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12. Appendixl: Quantum circuit theory 

The problem we are addressing in this section is, given a superconducting circuit 
made up of capacitors, inductors and Josephson junctions, how to systematically 
write its quantum hamiltonian, the generating function from which the quantum 
dynamics of the circuit can be obtained. This problem has been considered first 
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by Yurke and Denker [44] in a seminal paper and analyzed in further details by 
Devoret [45]. We will only summarize here the results needed for this review. 

The circuit is given as a set of branches, which can be capacitors, inductors 
or Josephson tunnel elements, connected at nodes. Several independent paths 
formed by a succession of branches can be found between nodes. The circuit can 
therefore contain one or several loops. It is important to note that a circuit has 
not one hamiltonian but many, each one depending on a particular representation. 
We are describing here one particular type of representation, which is usually 
well adapted to circuits containing Josephson junctions. Like in classical circuit 
theory, a set of independent current and voltages has to be found for a particular 
representation. We start by associating to each branch b of the circuit, the current 
ib flowing through it and the voltage vb across it (a convention has to be made 
first on the direction of the branches). Kirchhoff's laws impose relations among 
branch variables and some of them are redundant. The following procedure is 
used to eliminate redundant branches: one node of the circuit is first chosen as 
ground. Then from the ground, a loop-free set of branches called spanning tree 
is selected. The rule behind the selection of the spanning tree is the following: 
each node of the circuit must be linked to the ground by one and only one path 
belonging to the tree. In general, inductors (linear or non-linear) are preferred as 
branches of the tree but this is not necessary. Once the spanning tree is chosen 
(note that we still have many possibilities for this tree), we can associate to each 
node a "node voltage" Vn which is the algebraic sum of the voltages along the 
branches between ground and the node. The conjugate "node current" in is the 
algebraic sum of all currents flowing to the node through capacitors ONLY. The 
dynamical variables appearing in the hamiltonian of the circuit are the node fluxes 
and node charges defined as 

q n  "~" 

" v (tl) dt l  
o o  

~_ i ( t l )  d t l  
oo 

Using Kirchhoff's laws, it is possible to express the flux and the charge of each 
branch as a linear combination of all the node fluxes and charges, respectively. 
In this inversion procedure, the total flux through loops imposed by external flux 
bias sources and polarisation charges of nodes imposed by charge bias sources, 
appear. 

If we now sum the energies of all branches of the circuit expressed in terms 
of node flux and charges, we will obtain the hamiltonian of the circuit corre- 
sponding to the representation associated with the particular spanning tree. In 
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this hamiltonian, capacitor energies behave like kinetic terms while the inductor 
energies behave as potential terms. The hamiltonian of the LC circuit written in 
section 2 is an elementary example of this procedure. 

Once the hamiltonian is obtained it is easy get its quantum version by replac- 
ing all the node fluxes and charges by their quantum operator equivalent. The 
flux and charge of a node have a commutator given by i h, like the position and 
momentum of a particle: 

^ 

q ---~ 0 

[~,0]  -- ih 

One can also show that the flux and charge operators corresponding to a 
branch share the same commutation relation. Note that for the special case of 
the Josephson element, the phase 0 and Cooper pair number N ,  which are its 
dimensionless electric variables, have the property" 

[O,N] --i  

In the so-called charge basis, we have 

= ~ N  IN) (NI 
N 

1 
cos0 = ~ Z ( I N ) ( N + I I + I N + ) ( N I )  

N 

while in the so-called phase basis, we have 

0 ~r -  10) ~ (01 

Note that since the Cooper pair number N is an operator with integer eigen- 
values, its conjugate variable 0, has eigenvalues behaving like angles, i.e. they 
are defined only modulo 2zr. 

In this review, outside this appendix, we have dropped the hat on operators for 
simplicity. 
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13. Appendix 2: Eigenenergies and eigenfunctions of the Cooper pair box 

From Appendix 1, it easy to see that the hamiltonian of the Cooper pair box leads 
to the Schrodinger equation 

Ec i 0----0 - Ng - Ej  cos 0 tPk (0) - E~ ~k (0) 

The functions qJk (0) e -i Ug and energies E~ are solutions of the Mathieu equa- 
tion and can be found with arbitrary precision for all values of the parameters Ng 
and E j / E c  [46]. For instance, using the program Mathematica, we find 

Ek -- 

• ~ (o)  = 

EC./~A [k + 1 - ( k  + 1)mod2 + 2Ng(-1)  k, - 2 E j / E c ]  

eiNgO{ [4 E k - 2 E j O ]  
, / ~  Mc Ec ' Ec '-2 

+i ( -  1)k+ 1./~ S EC ' EC ' -2 

where .AlIA(r, q) : MathieuCharacteristicA[r, q] , 
]24c (a, q, z) - MathieuC [ a, q, z ] , 
~4s (a, q, z) -- MathieuS [a, q, z] . 

14. Appendix 3: Relaxation and decoherence rates for a qubit 

Definition of the rates 

We start by introducing the spin eigenreference frame ~, ~ and ~ consisting of the 
unit vector along the eigenaxis and the associated orthogonal unit vectors (~ is in 
the XZ plane). For instance, for the Cooper pair box, we find that ~ - cos ot Z + 
sinotX, with tanot - 2Ec (Ng - 1 / 2 ) / E j ,  while ~ - - sinotZ + cosotX. 

Starting with S pointing along ~ at time t -- 0, the dynamics of the Bloch 
vector in absence of relaxation or decoherence is 

_..> 
S 0 (t) - cos  (o901) .~ + sin (co01) 

In presence of relaxation and decoherence, the Bloch vector will deviate from .-.> 
S 0 (t) and will reach eventually the equilibrium va lue  Sz q z, where Sz q -- tanh h~o0, 2kBT " 

We define the relaxation and decoherence rates as 
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F1 - -  l im 
t----~ o o  

In (Sz (t) - Sz q ) 

F~ -- lim 
t--+ cx~ t 

t 

In ~~q~  

Note that these rates have both a useful and rigorous meaning only if the evo- 
lution of the components of the average Bloch vector follows, after a negligibly 
short settling time, an exponential decay. The F1 and I'¢ rates are related to the 
NMR spin relaxation times T1 and T2 [47] by 

-1 T1 -- F 1 

T2 - (F4~ + 1-'1/2) -1 

The T2 time can be seen as the net decay time of quantum information, includ- 
ing the influence of both relaxation and dephasing processes. In our discussion 
of superconducting qubits, we must separate the contribution of the two type of 
processes since their physical origin is in general very different and cannot rely 
on the T2 time alone. 

Expressions for  the rates 

The relaxation process can be seen as resulting from unwanted transitions be- 
tween the two eigenstate of the qubit induced by fluctuations in the effective 
fields along the x and y axes. Introducing the power spectral density of this field, 
one can demonstrate from Fermi's Golden Rule that, for perturbative fluctuations, 

1-'1 
Sx (o)01) -+- Sy (co01) 

h 2 

Taking the case of the Cooper pair box as an example, we find that Sy (o) 01) -- 
0 and that 

f ~oo Sx (co) - d te  i°)t (A (t) A (0)) + (B (t) B (0)) 
(x) 
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where 

A (t) 

B (t) 

Eel 

A E j  (t) Eel 

2v/E2 + Ee21 

Ej  AEel (t) 

2v/E2 -+- Ee 2 

- 1 / 2 )  

Since the fluctuations AEel (t) can be related to the impedance of the environ- 
ment of the box [ 18,20, 48], an order of magnitude estimate of the relaxation rate 
can be performed, and is in rough agreement with observations [21,49]. 

The decoherence process, on the other hand, is induced by fluctuations in the 
effective field along the eigenaxis z. If these fluctuations are Gaussian, with a 
white noise spectral density up to frequencies of order several F~ (which is often 
not the case because of the presence of 1/f noise) we have 

I"4, = 
Sz (co ~_ O) 

h 2 

In presence of a low frequency noise with an 1/f behavior, the formula is more 
complicated [50]. If the environment producing the low frequency noise consists 
of many degrees of freedom, each of which is very weakly coupled to the qubit, 
then one is in presence of classical dephasing which, if slow enough, can in prin- 
ciple be fought using echo techniques. If, one the other hand, only a few degrees 
of freedom like magnetic spins or glassy two-level systems are dominating the 
low frequency dynamics, dephasing is quantum and not correctable, unless the 
transition frequencies of these few perturbing degrees of freedom is itself very 
stable. 
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1. Introduction 

Josephson junctions are good candidates for the construction of quantum bits 
(qubits) for a quantum computer[I]. This system is attractive because the low 
dissipation inherent to superconductors make possible, in principle, long coher- 
ence times. In addition, because complex superconducting circuits can be mi- 
crofabricated using integrated-circuit processing techniques, scaling to a large 
number of qubits should be relatively straightforward. Given the initial success 
of several types of Josephson qubits[2, 3, 4, 5, 6, 7, 9, 8, 10], a question naturally 
arises: what are the essential components that must be tested, understood, and 
improved for eventual construction of a Josephson quantum computer? 

In this paper we focus on the physics of the Josephson junction because, being 
nonlinear, it is the fundamental circuit element that is needed for the appearance 
of usable qubit states. In contrast, linear circuit elements such as capacitors and 
inductors can form low-dissipation superconducting resonators, but are unusable 
for qubits because the energy-level spacings are degenerate. The nonlinearity 
of the Josephson inductance breaks the degeneracy of the energy level spacings, 
allowing dynamics of the system to be restricted to only the two qubit states. 
The Josephson junction is a remarkable nonlinear element because it combines 
negligible dissipation with extremely large nonlinearity - the change of the qubit 
state by only one photon in energy can modify the junction inductance by order 
unity! 

Most theoretical and experimental investigations with Josephson qubits as- 
sume perfect junction behavior. Is such an assumption valid? Recent experi- 
ments by our group indicate that coherence is limited by microwave-frequency 
fluctuations in the critical current of the junction[ 10]. A deeper understanding of 
the junction physics is thus needed so that nonideal behavior can be more readily 
identified, understood, and eliminated. Although we will not discuss specific 
imperfections of junctions in this paper, we want to describe a clear and precise 
model of the Josephson junction that can give an intuitive understanding of the 
Josephson effect. This is especially needed since textbooks do not typically de- 
five the Josephson effect from a microscopic viewpoint. As standard calculations 
use only perturbation theory, we will also need to introduce an exact description 
of the Josephson effect via the mesoscopic theory of quasiparticle bound-states. 

The outline of the paper is as follows. We first describe in Sec. 2 the nonlinear 
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Josephson inductance. In Sec. 3 we discuss the three types of qubit circuits, and 
show how these circuits use this nonlinearity in unique manners. We then give a 
brief derivation of the BCS theory in Sec. 4, highlighting the appearance of the 
macroscopic phase parameter. The Josephson equations are derived in Sec. 5 
using standard first and second order perturbation theory that describe quasiparti- 
cle and Cooper-pair tunneling. An exact calculation of the Josephson effect then 
follows in Sec. 6 using the quasiparticle bound-state theory. Section 7 expands 
upon this theory and describes quasiparticle excitations as transitions from the 
ground to excited bound states from nonadiabatic changes in the bias. Although 
quasiparticle current is typically calculated only for a constant DC voltage, the 
advantage to this approach is seen in Sec. 8, where we qualitatively describe 
quasiparticle tunneling with AC voltage excitations, as appropriate for the qubit 
state. This section describes how the Josephson qubit is typically insensitive to 
quasiparticle damping, even to the extent that a phase qubit can be constructed 
from microbridge junctions. 

2. The nonlinear Josephson inductance 

A Josephson tunnel junction is formed by separating two superconducting elec- 
trodes with an insulator thin enough so that electrons can quantum-mechanically 
tunnel through the barrier, as illustrated in Fig. 1 . The Josephson effect de- 
scribes the supercurrent Ij that flows through the junction according to the clas- 
sical equations 

I j  -- Io sin 8 (2.1a) 
Ood8 

(2.1b) 
V=  -2re dt  ' 

where ~0 = h/2e  is the superconducting flux quantum, I0 is the critical-current 
parameter of the junction, and 8 = 4~c - ¢PR and V are respectively the su- 
perconducting phase difference and voltage across the junction. The dynamical 
behavior of these two equations can be understood by first differentiating Eq. 2.1 a 
and replacing d S / d t  with V according to Eq. 2.1b 

d l j  2Jr 
= I0 cos 8 ~ V.  (2.2) 

dt COo 

With d l j / d t  proportional to V, this equation describes an inductor. By defin- 
ing a Josephson inductance L j  according to the conventional definition V - 
L j d I j / d t ,  one finds 

~0 - . (2.3a) 
L J 2:r I0 cos 8 
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Fig. 1. Schematic diagram of a Josephson junction connected to a bias voltage V. The Josephson 
current is given by I j  = I0 sin 3, where 3 - ~b L - ~b R is the difference in the superconducting phase 
across the junction. 

The 1/cos 3 term reveals that this inductance is nonlinear. It becomes large as 
--+ re/2, and is negative for zr/2 < 6 < 3Jr/2. The inductance at zero bias is 

LjO = ~o/2zrlo. 
An inductance describes an energy-conserving circuit element. The energy 

stored in the junction is given by 

Uj = 1 Ij Vdt (2.4a) 
v J  

f ~o d6dt (2.4b) = Io sin 6 2--~- dt 

_ _ Io~o { sin 6 d6 (2.4c) 
2zr J 
Io~o 

= - - -  cos 6. (2.4d) 
2zr 

This calculation of energy can be generalized for other nondissipative circuit 
elements. For example, a similar calculation for a current bias gives Ubias = 

- ( I~0 /2zr )3 .  Conversely, if a circuit element has an energy U(6), then the 
current-phase relationship of the element, analogous to Eq. 2.1 a, is 

2re OU(3) 
Ij(3) = . (2.5) 

'~o 06 

A generalized Josephson inductance can be also be found from the second deriv- 
ative of U ,  

1 _ (27 r )2  02U(~) 
Lj ~0 - ~  . (2.6) 

The classical and quantum behavior of a particular circuit is described by a 
Hamiltonian, which of course depends on the exact circuit configuration. The 
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procedure for writing down a Hamiltonian for an arbitrary circuit has been de- 
scribed in detail in a prior publication[ 11]. The general form of the Hamiltonian 
for the Josephson effect is H j = U j .  

3. Phase, flux, and charge qubits 

A Josephson qubit can be understood as a nonlinear resonator formed from the 
Josephson inductance and its junction capacitance, nonlinearity is crucial be- 
cause the system has many energy levels, but the operating space of the qubit 
must be restricted to only the two lowest states. The system is effectively a 
two-state system[ 12] only if the frequency Wl0 that drives transitions between the 
qubit states 0 < > 1 is different from the frequency 0921 for transitions 1 < > 2. 

We review here three different ways that these nonlinear resonators can be 
made, and which are named as phase, flux, or charge qubits. 

The circuit for the phase-qubit circuit is drawn in Fig. 2(a). Its Hamiltonian 
is 

1 02 I0~0 ~ I~0~  
H - 2C - 2----~ cos8 - 27r 6 ,  (3.1) 

where C is the capacitance of the tunnel junction. A similar circuit is drawn for 
the flux-qubit circuit in Fig. 2(b), and its Hamiltonian is 

H = 2C - 2---~ cos8 + ~-~(* ~ . (3.2) 

The charge qubit has a Hamiltonian similar to that in Eq. 3.1, and is described 
elsewhere in this publication. Here we have explicitly used notation appropriate 
for a quantum description, with opeArators charge Q and phase difference 6 that 
obey a commutation relationship [8, Q] = 2ei .  Note that the phase and flux 
qubit Hamiltonians are equivalent for L --+ c~ and I = ~ / L ,  which corresponds 
to a current bias created from an inductor with infinite impedance. 

The commutation relationship between 8 and Q imply that these quantities 
must be described by a wavefunction. The characteristic widths of this wave- 
function are controlled by the energy scales of the system, the charging energy of 
the junction E c  - e 2 / 2 C  and the Josephson energy E j  - I0~0/27r. When the 
energy of the junction dominates, E j  >> E c ,  then 8 can almost be described clas- 
sically and the width of its wavefunction is small (~-2 _ (~-)2) << 1. In contrast, 
the uncertainty in charge is large ( 0  2 - (Q) 2) ~ (2e)2. 

If the Josephson inductance is constant over the width of the 8 wavefunction, 
then a circuit is well described as a L j - C  harmonic oscillator, and the qubit states 
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(a) Phase (b) Flux (c) Charge 

I ---> Io L "" L jo  <~2> large 

0 
Fig. 2. Comparison of the phase (a), flux (b), and charge (c) qubits. Top row illustrates the circuits, 
with each "X" symbol representing a Josephson juncton. Middle row has a plot of the Hamiltonian 
potential (thick line), showing qualitatively different shapes for three qubit types. Ground-state 
wavefunction is also indicated (thin line). Key circuit parameters are listed in next row. Lowest 
row indicates variations on the basic circuit, as discussed in text. The lowest three energy levels are 
illustrated for the phase qubit (dotted lines). 

are degenerate and not usable. Usable states are created only when the Josephson 
inductance changes over the 6-wavefunction. 

The most straightforwardway for the wavefunction to be affected by the 
Josephson nonlinearity is for 6 to have a large width, which occurs when Ej  
Ec.  A practical implementation of this circuit is illustrated in Fig 2(c), where a 
double-junction Coulomb blockade device is used instead of a single junction to 
isolate dissipation, from the leads[2, 4]. Because the wavefunction extends over 
most of the -cos 6 Hamiltonian, the transition frequency wl0 can differ from O)21 
by more than 10 %, creating usable qubit states[13]. 

Josephson qubits are possible even when Ej  >> Ec ,  provided that the junction 
is biased to take advantage of its strong nonlinearity. A good example is the 
phase qubit[6], where typically E j ,~ 104Ec, but which is biased near 6 < 
zr/2 so that the inductance changes rapidly with 6 (see Eq. 2.3a). Under these 
conditions the potential can be accurately described by a cubic potential, with the 
barrier height A U ~ 0 as I --+ I0. Typically the bias current is adjusted so that 
the number of energy levels in the well is ~ 3 - 5, which causes o910 to differ 
from O)21 by an acceptably large amount ~ 5 %. 

Implementing the phase qubit is challenging because a current bias is required 
with large impedance. This impedance requirement can be met by biasing the 
junction with flux through a superconducting loop with a large loop inductance 
L, as discussed previously and drawn in Fig. 2(a). To form multiple stable 
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flux states and a cubic potential, the loop inductance L must be chosen such that 
L >~ 2Ljo .  We have found that a design with L _~ 4.5L j0 is a good choice since 
the potential well then contains the desired cubic potential and only one flux state 
into which the system can tunnel, simplifying operation. 

The flux qubit is designed with L < L J0 and biased in flux so that (~') - Jr. 
Under these conditions the Josephson inductance is negativAe and is almost can- 
celed out by L. The small net negative inductance near 6 = Jr turns positive 
away from this value because of the 1 / cos 6 nonlinearity, so that the final poten- 
tial shape is quartic, as shown in Fig. 2(b). An advantage of the flux qubit is a 
large net nonlinearity, so that col0 can differ from o921 by over 100 %. 

The need to closely tune L with L jo has inspired the invention of several 
variations to the simple flux-qubit circuit, as illustrated in Fig. 2(b). One method 
is to use small area junctions[7] with E j ~ I OEc, producing a large width 
in the 6 wavefunction and relaxing the requirement of close tuning of L with 
L jo. Another method is to make the qubit junction a two-junction SQUID, 
whose critical current can then be tuned via a second flux-bias circuit[14, 15]. 
Larger junctions are then permissible, with E j  ~ 102Ec to 103Ec. A third 
method is to fabricate the loop inductance from two or more larger critical-current 
junctions[16]. These junctions are biased with phase less than zr/2, and thus act 
as positive inductors. The advantage to this approach is that junction inductors 
are smaller than physical inductors, and fabrication imperfections in the critical 
currents of the junctions tend to cancel out and make the tuning of L with L J0 
easier. 

In summary, the major difference between the phase, flux, and charge qubits 
is the shape of their nonlinear potentials, which are respectively cubic, quartic, 
and cosine. It is impossible at this time to predict which qubit type is best 
because their limitations are not precisely known, especially concerning deco- 
herence mechanisms and their scaling. However, some general observations can 
be made. 

First, the flux qubit has the largest nonlinearity. This implies faster logic gates 
since suppressing transitions from the qubit states 0 and 1 to state 2 requires 
long pulses whose time duration scales as 1/ICOl0 -~o211[12]. The flux qubit 
allows operation times less than ,-, 1 ns, whereas for the phase qubit 10 ns is 
more typical. We note, however, that this increase in speed may not be usable. 
Generating precise shaped pulses is much more difficult on a 1 ns time scale, 
and transmitting these short pulses to the qubit with high fidelity will be more 
problematic due to reflections or other imperfections in the microwave lines. 

Second, the choice between large and small junctions involve tradeoffs. Large 
junctions ( E j  >> E c )  require precise tuning of parameters ( L / L j o  for the flux 
qubit) or biases (I /I0 for the phase qubit) to produce the required nonlinearity. 
Small junctions ( E j  ~ E c )  do not require such careful tuning, but become sen- 
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sitve to 1 / f  charge fluctuations because E c  has relatively larger magnitude. 
Along these lines, the coherence of qubits have been compared considering 

the effect of low-frequency 1 / f  fluctuations of the critical current[ 17]. These 
calculations include the known scaling of the fluctuations with junction size and 
the sensitivity to parameter fluctuations. It is interesting that the calculated co- 
herence times for the flux and phase qubits are similar. With parameters choosen 
to give an oscillation frequency of ~ 1 GHz for the flux qubit and ,-~ 10 GHz for 
the phase qubit, the number of coherent logic-gate operations is even approxi- 
mately the same. 

4. BCS theory and the superconducting state 

A more complete understanding of the Josephson effect will require a derivation 
of Eqs. 2.1 a and 2. lb. In order to calculate this microscopically, we will first re- 
view the BCS theory of superconductivity[ 18] using a "pair spin" derivation that 
we believe is more physically clear than the standard energy-variational method. 
Although the calculation follows closely that of Anderson[ 19] and Kittel[20], we 
have expanded it slightly to describe the physics of the superconducting phase, 
as appropriate for understanding Josephson qubits. 

In a conventional superconductor, the attractive interaction that produces su- 
perconductivity comes from the scattering of electrons and phonons. As illus- 
trated in Fig. 3(a), to first order the phonon interaction scatters an electron from 
one momentum state to another. When taken to second order (Fig. 3(b)), the 
scattering of a virtual phonon produces a net attractive interaction between two 
pairs of electrons. The first-order phonon scattering rates are generally small, not 
because of the phonon matrix element, but because phase space is small for the 
final electron state. This implies that the energy of the second order interaction 
can be significant if there are large phase-space factors. 

The electron pairs have the largest net interaction if every pair is allowed by 
phase space factors to interact with every other pair. This is explicitly created 
in the BCS wavefunction by including only pair states (Cooper pairs) with zero 
net momentum. Under this assumption and using a second quantized notation 
where c~ is the usual creation operator for an electron state of wavevector k, the 
most general form for the electronic wavefunction is 

~P -- I - I (uk -+- vkeiePkCtkC?__ k) 10) , (4.1) 
k 

where Uk and vk are real and correspond respectively to the probability amplitude 
2 1 For for a pair state to be empty or filled, and are normalized by u 2+  v k - . 
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(a) 
1 m 

Fig. 3. Feynman diagram of electron-phonon interaction showing (a) first- and (b) second-order 
processes. 

generality we have included a separate phase factor 4~k for each pair. Because 
each pair state is described as a two state system, the wavefunction may also be 
described equivalently with a "pair-spin" tensor product 

k vkeiek ® ,  (4.2) 

and the Hamiltonian given with Pauli matrices Crxk, ayk, and azk. 
The kinetic part of the Hamiltonian must give qJ in the ground state with pairs 

occupied only for Ikl < k f ,  where k f  is the Fermi momentum. If we define the 
kinetic energy of a single electron, relative to the Fermi energy, as ~k, then the 
kinetic Hamiltonian for the pair state is 

I lK -- -- ~ ~kcrzk . (4.3) 

The solution of HK qJ -- Ek+~P gives for the lowest energy, E k - ,  the values 
vk = 1 for Ikl < k f ,  and Vk = 0 for Ikl > k f ,  as required. An energy Ek+  -- 
E k -  -- 2 I~kl is needed for the excitation of pairs above the Fermi energy or the 
excitation of holes (removal of pairs) below the Fermi energy. 

The potential part of the pair-spin Hamiltonian comes from the second-order 
phonon interaction that both creates and destroys a pair, as illustrated in Fig. 3(b). 
The Hamiltonian for this interaction is given by 

V 
HA -- 2 ~ ( f f x k f f x l  ÷ ffykffyl) , (4.4) 

k,l 

and can be checked to correspond to the second-quantization Hamiltonian HA = 
- V  Y~ c[c~kckc_k  by using the translation ~rxk --~ c k c - k  ÷ c[ct__k and ~ryk --~ 

t t  
i ( ckc -k  -- c k c_ k). 

We will first understand the solution to the Hamiltonian HK ÷HA for the phase 
variables 4~k- This Hamiltonian describes a bath of spins that are all coupled to 
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each other in the x-y plane (HA) and have a distribution of magnetic fields in the 
z-direction (HK) .  Because HA is negative, each pair of spins becomes aligned 
with each other in the x-y plane, which implies that every spin in the bath has the 
same phase 4~k. This condition explains why the BCS wavefunction has only one 
phase 4) = 4~k for all Cooper pairs[21]. Because there is no preferred direction 
in the x-y plane, the solution to the Hamiltonian is degenerate with respect to 
4) and the wavefunction for 4) is separable from the rest of the wavefunction. 
Normally, this means that 4) can be treated as a classical variable, as is done for 
the conventional understanding of superconductivity and the Josephson effects. 
For Josephson qubits, where 4) must be treated quantum mechanically, then the 
behavior of 4) is described by an external-circuit Hamiltonian, as was done in 
Sec. 3. 

For a superconducting circuit, where one electrode is biased with a voltage V, 
the voltage can be accounted for with a gauge transformation on each electron 

t ei(e/h) f Vdt state c k --+ c~. The change in the superconducting state is thus given 
by 

tit ~ I-I(uk .qt_ vkeiq~ei(e/h) f Vdt,,,tDi(e/h) f Vdtct k ~k,~ _ )10) (4.5) 
k 

= I-I(uk -+- Vk ei[ck+i(2e/h) f Vdtlc?kc?__ k) 10) • 

k 
(4.6) 

The change in 4) can be written equivalently as 

d ~  2 e V  
= (4.7) 

dt  h ' 

which leads to the AC Josephson effect. 
The solution for uk and Vk proceeds using the standard method of mean-field 

theory, with 

(HA) -- V - - ~  Z(O 'xk  (f ix/)  n t- O'yk ( f l y / ) ) ,  (4.8) 
k,l 

(axl) -- ul, vie -i4) . ax • (4.9) 

= 2UlVl cosq~, (4.10) 

(Oyl) = 2ulvt  sin4). (4.11) 
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z 

8~ 
f 

W = ( sin0/2 
-- eiOcosO/2] 

(coso  ) 
t"~_F-- eiO sin O/2 

Fig. 4. Bloch sphere solution of the Hamiltonian ((rx, Cry, az) • (Bx, By, Bz). The vector B gives 
the direction of the positive energy eigenstate. 

Using the standard definition of the gap potential, one finds 

--  V ~ ull)l , A 
l 

H = HK + (HA) 

= -- Z (axk, O'yk, crzk). (A cos 4), A sin 4', ~k) • 
k 

(4.12a) 

(4.12b) 

(4.12c) 

This Hamiltonian is equivalent to a spin 1/2 particle in a magnetic field, and 
its solution is well known. The energy eigenvalues of HqJ = Ek+qJ are given 
by the total length of the field vector, 

Ek+ = --i-( A2 q- ~2)1/2 , (4.13) 

and the directions of the Bloch vectors describing the Ek+ and Ek_ eigenstates 
are respectively parallel and antiparallel to the direction of the field vector, as 
illustrated in Fig. 4. The ground state solution qJk- is given by 

~ 1 ( ~ k )  (4.14) uk--  ~ 1+~--~ , 

jl( 
Vk-- ~ 1 - - ~  , (4.15) 

4)k = 4), (4.16) 

with the last equation required for consistency. The excited state qJk+ is similarly 
described, but with Uk and Vk interchanged and 4) ~ 4) + 7r. 
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At temperature T = 0 the energy gap A may be solved by inserting the solu- 
tions for u~ and v~ into Eq. 4.12a 

A 
A -- V Z 2(A2 + ~2)1/2 

l 
(4.17) 

Converting to an integral by defining a density of states No at the Fermi energy, 
and introducing a cutoff of the interaction V at the Debye energy OD, one finds 
the standard BCS result, 

A -- 20De -1~Nov . (4.18) 

Two eigenstates Ek- and Ek+ have been determined for the pair Hamiltonian. 
Two additional "quasiparticle" eigenstates must exist, which clearly have to be 
single-particle states. These states may be solved for using diagonalization tech- 
niques, giving 

qJk0 = c~10) , (4.19a) 

qJkl - c*_ k 10) . (4.19b) 

Fortunately, these states may be easily checked by inspection. The kinetic part 
of the Hamiltonian gives H/< qJk0,1 - 0 since qJk0,1 corresponds to the creation 
of an electron and a hole, and the electron-pair and hole-pair states have opposite 
kinetic energy. The potential part of the energy also gives (HA) q'k0,1 = 0 since 
the interaction Hamiltonian scatters pair states. Thus the eigenenergies of ~I'k0,1 
are zero, and these states have an energy Ek = IEk-I above the ground state. 

The quasiparticle operators that take the ground-state wavefunction to the ex- 
cited states are 

Y ;O - -  UkC?k -- l)ke-iOc-k ' 
- "kc*--k +   e-i+ck, 

(4.20) 

(4.21) 

which can be easily checked to give 

iO t _  × o(Uk + c ctk)10> = 10>,  

Y;l(Uk -F vkeiOctkc?__ k) [0) -- c?__k 10) .  

(4.22) 

(4.23) 

A summary of these results is illustrated in Fig. 5, where we show the energy 
levels, wavefunctions, and operators for transitions between the four states. The 
quasiparticle raising and lowering operators Y]0, Y;l, Yk0, and Ykl produce tran- 
sitions between the states and have orthogonality relationships similar to those of 
the electron operators. 
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E k 1 
Fig. 5. Energy-level diagram for the ground-pair state (solid line), two quasiparticle states (dashed 
lines), and the excited-pair state (short dashed line). 

It is interesting to note that the ground and excited pair states are connected by 
the two quasiparticle operators e-i4Jy/1F/0qJk_ -- qJk+. Because the value utvl 
changes sign between ~Pk- and qJk+, and is zero for ~Pk0,1, the gap equation 4.12a 
including the effect of quasiparticles is proportional to (1 - Y;oYko - Y~I Ykl )" 
Along with the energy levels, these results imply that the two types of quasipar- 
ticles are independent excitations. 

5. The Josephson effect, derived from perturbation theory 

We will now calculate the quasiparticle and Josephson current for a tunnel junc- 
tion using first and second order perturbation theory, respectively. We note that 
our prior calculations have not been concerned with electrical transport. In fact, 
the electron operators describing the superconducting state have not been influ- 
enced by charge, and thus they correspond to the occupation of an effectively 
neutral state. Because a tunneling event involves a real transfer of an electron, 
charge must now be accounted for properly. We will continue to use electron 
operators for describing the states, but will keep track of the charge transfer sep- 
arately. 

When an electron tunnels through the barrier, an electron and hole state is 
created on the opposite (left and fight) side of the barrier. The tunneling Hamil- 
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tonian for this process can be written as 

HT = HT+ + H T -  + HT+ + H T -  (5.1a) 

= ~ (tLRCLC~ +t_L_RC_LC~ • t - R  + tLRCLCR 
L,R 

+ t*_L_Rc*_Lc_R) , (5.1b) 

where tLR is the tunneling matrix element, and the L and R indices refer respec- 
tively to momentum states k on the left and fight superconductor. The first two 

..._> _...> 
terms H T+ and H T- correspond to the tunneling of one electron from left to 

< - -  <.._ 
the fight, whereas H T+ and H T- are for tunneling to the left. The Hamiltonian 

_.__> ..._> 
is explicitly broken up into H T+ and H T- to account for the different electron 
operators c~ and ct__k for positive and negative momentum. 

The electron operators must first be expressed in terms of the quasiparticle 
operators y because these produce transitions between eigenstates of the super- 
conducting Hamiltonian. Equations 4.20, 4.21, and their adjoints are used to 
solve for the four electron operators 

Ck --  Uk YkO + Vk e i ~ Y~kl 

c~ = ~,~�~o + ok e-i~�kl 
C-k  = UkYkl ~ l)keiCPY?kO 

c~  - uk�]l - v~ e-i~�~o" 
(5.2) 

Substituting Eqs. 5.2 into 5. lb, one sees that all four terms of the Hamiltonian 
have operators y t that produce quasiparticles. We calculate here to first order 

-----> 
the quasiparticle current from L to R given by H T+ + H T-. The Feynman 
diagrams (a) and (b) in Fig. 6 respectively describe the tunneling Hamiltonian __+ 
for the H T+ and -H z -  terms. In this diagram a solid line represents a Cooper 
pair state in the ground state, whereas a quasiparticle state is given by a dashed 
line. Only one pair participates in the tunneling interaction, so only one of the 
three solid lines is converted to a dashed line. The line of triangles represents the 
tunneling event and is labeled with its corresponding HT Hamiltonian, with the 
direction of the triangles indicating the direction of the electron tunneling. The 
c~ operators, acting on the L or R lead, is rewritten in terms of the y operators 
and placed above or below the vertices. Since only y t operators give a nonzero 
term when acting on the ground state, the effect of the interaction is to produce 

qj~,R with total energy ER + EL, and with amplitudes given at final states the 
right of the figure. 

The two final states in Fig 6(a) and (b) are orthogonal, as well as states involv- 
ing different values of L and R. The total current is calculated as an incoherent 
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Fig. 6. First-order Feynmann diagrams for interaction H T+ (a) and H T-  (b). Solid lines are 
Cooper-pair states, dashed lines are quasiparticle excitations, and arrow-lines represents tunneling 
interaction. Electron operators arising from interaction are displayed next to vertices. 

sum over all possible final quasiparticle states, under the condition that the to- 
tal quasiparticle energy for the final state is equal to the energy gained by the 
tunneling of the electron 

ER + EL = eV . (5.3) 

The total current from L to R is given by e multiplied by the transition rate 

2re 
lqp -- e---~ E 

(ER+EL =eV) 

L,R 
(5.4a) 

2~e (E R+~  =eV) 2] )2 

L,R 
(5.4b) 

4zre 
Itl 2 NoRNOL f v 2 d~L f u 2 d~R 6(eV - EL -- ER),(5.4c) 

- - O ~  - -OO 

where in the last equation we have expressed the conservation of energy with 
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a Dirac g-function, and have assumed matrix elements It[ 2 of constant strength. 
Because E(~k) -- E( -~k)  and uk(~k) -- vk(--~k), one finds 

/qp = 
4zre 

o o  

Itl 2 NoN NoL f + 
0 

o o  

f (u~ + v 2) d~R ~ (e V - EL - ER) 

0 

47r e 
OO cx~ 

I t I 2 N o R N o L f d ~ L f d ~ R 6 ( e V - E L - - E R ) .  
0 0 

(5.5a) 

This result is equivalent to the standard "semiconductor model" of the quasi- 
particle current, which predicts no current for V < 2A/e ,  a rapid rise of current 
at 2A/e ,  and then a current proportional to V at large voltages. Note that Eq. 
5.4c has a sum over the occupation probability v 2 of the pair state and the occu- 
pation probability u 2 of a hole-pair state, as is expected given the operators cLc ~ 
in the tunneling Hamiltonian. The final result of Eq. 5.5a does not have these 
factors because the occupation probability is unity when summed over the -l-~k 
states. 

It is convenient to express the tunneling matrix element in terms of the normal- 
state resistance of the junction, obtained by setting A -- 0, with the equation 

1/RN =- Iqp/V (5.6a) 
o(3 

__ __ 4zre I t I 2 N o R N o L { d ~ t { d ~ t ~ , ( e V _ ~ L _ ~ R ) / V  (5.6b) 
J J h 
0 0 

47re 2 
-- [tl 2 NoRNOL • (5.6c) 

h 

We now calculate the tunneling current with second-order perturbation theory. 
The tunneling Hamiltonian, taken to second order, gives 

_/(2) 1 
T - ~ - . H v - - H T ,  (5.7) 

i Ei 

where 6i is the energy of the intermediate state i. Because the terms in HT 
have both y t and Y operators, the second-order Hamiltonian gives a nonzero 
expectation value for the ground state. This is unlike the first-order theory, which 
produces current only through the real creation of quasiparticles. 
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Because HT has terms that transfer charge in both directions, Hr  HT" will 
produce terms which transfer two electrons to the right, two to the left, and with 
no net transfer. With no transfer, a calculation of the second-order energy gives 
a constant value, which has no physical effect. We first calculate terms for 
transfer to the right from ( H 7"+ + H 7"_)( H 7"+ + H 7"_), which gives nonzero 
expectation values only for H T+ H 7"_ + H 7"_ H 7"+. The Feynman diagrams 
for these two terms are given in Fig. 7(a) and (b), where we have displayed only 
the amplitudes from the nonzero operators. The expectation value of these two 
Hamiltonian terms is given by 

--~_~(*R_I(*L_](oRe-i~uL) 
L,R 

t t 
YROYL1YROYLltLRt_L_ R + YR1YLOY?R1Y?LOt_L_RtLR X 

ER + EL 

1 
- 2  ]tl 2 e i(ckL-ckR) Z ( U R U R ) ( U L  I ) L ) ~  

L,R ER + EL 
OQ 0¢) 

~ 2  ] t]2ei~NogNoL f d~R f d ~ t  
- oc - oo 

A A 1 

ER EL ER + EL 

o c  o¢) 

ei fdoRfdoL 2Jr e2 R N 
-- 00 -- (X~ 

hA ei, ( 2 )  2 
2zc e2 R N 

cosh OR + cosh OL 

(5.8a) 

(5.8b) 

(5.8c) 

(5.8d) 

(5.8e) 

* and assumed the same gap A for both su- where we have used tcg = t_L_g 
perconductors. A similar calculation for transfer to the left gives the complex 
conjugate of Eq. 5.8e. The sum of these two energies gives the Josephson energy 
U j, and using Eq. 2.5, the Josephson current I j ,  

1RK 
Uj = - - - ~ A c o s 6 ,  (5.9) 

8RN 
re A 

I j  = - - ~ s i n 3 ,  (5.10) 
2 eRu 

where R K -- h/e 2 is the resistance quantum. Equation 5.10 is the standard 



Superconducting qubits and the physics of Josephson junctions 507 

Ambegaokar-Baratoff formula[22] for the Josephson current at zero tempera- 
ture. 

(a) q~R 
u R Z~o -- v Re-iOR T"RO . . . . . . . .  ~ R  

- II 

vLei~ 7'~l ULT"L1 

U R ~'~I v Re-iOR yR1 (b) v"_ 
- e .  

- i ~ ~ ~ 

- -  " - I -  - - v L e~°~ yio U L T"Lo 

Fig. 7. Second-order Feynman diagrams for the transfer of two electrons across the junction. Only 
nonzero operators are displayed next to vertices. 

The Josephson current is a dissipationless current because it arises from a new 
ground state of the two superconductors produced by the tunneling interaction. 
This behavior is in contrast with quasiparticle tunneling, which is dissipative 
because it produces excitations. It is perhaps surprising that a new ground state 
can produce charge transfer through the junction. This is possible only because 
the virtual quasiparticle excitations are both electrons and holes: the electron-part 
tunnels first through the junction, then the hole-part tunnels back. Only states of 
energy A around the Fermi energy are both electron- and hole-like, as weighted 
by the (VRUlc)(u c vc)  term in the integral. 

The form of the Josephson Hamiltonian can be understood readily by noting 
that the second-order Hamiltonian, 

H T"+ H T ~ It[ 2 CLC_LCtR c? - -R  (5 . 1 1 )  

L,R 

It[ 2 
= 2 Z ( f f x L ~ x R  + CryLffyR) ' (5.12) 

L,R 

corresponds to the pair-scattering Hamiltonian of Eq. 4.4. Comparing with the 
gap-equation solution, one expects Uj ~ [tl 2 A cos 6, where the cos 3 term arises 
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from the spin-spin interaction in the x-y plane. 

We would like to make a final comment on a similarity between the BCS 
theory and the Josephson effect. In both of these derivations we see that a dissi- 
pative process that is described in first-order perturbation theory, such as phonon 
scattering or quasiparticle tunneling, produces in second order a new collective 
superfluid behavior. This collective behavior emerges from a virtual excitation 
of the dissipative process. Dissipation is normally considered undesirable, but 
by designing systems to maximize dissipation, it may be possible to discover new 
quantum collective behavior. 

With this understanding of the Josephson effect and quasiparticle tunneling, 
how accurate is the description of the Josephson junction with the Hamiltonian 
corresponding to Eq. 5.9? There are several issues that need to be considered. 

First, quasiparticle tunneling is a dissipative mechanism that produces deco- 
herence. Although it is predicted to be absent for V < 2A/e,  measurements of 
real junctions show a small subgap current. This current is understood to arise 
from multiple Andreev reflections, which are described as higher-order tunnel- 
ing processes. We thus need a description of the tunnel junction that easily pre- 
dicts these processes for arbitrary tunneling matrix elements. This is especially 
needed as real tunnel junctions do not have constant matrix elements, as assumed 
above. Additionally, we would like to know whether a small number of major 
imperfections, such as "pinhole" defects, will strongly degrade the coherence of 
the qubit. 

Second, quasiparticle tunneling has been predicted for an arbitrary DC volt- 
age across the junction. However, the qubit state has (V) = 0, but may excite 
quasiparticles with AC voltage fluctuations. This situation is difficult to calcu- 
late with perturbation theory. In addition, is it valid to estimate decoherence 
from quasiparticles at zero voltage simply from the junction resistance at subgap 
voltages? 

Third, how will the Josephson effect and the qubit Hamiltonian be modified 
under this more realistic description of the tunnel junction? 

All of these questions and difficulties arise because perturbation theory has 
been used to describe the ground state of the Josephson junction. The BCS the- 
ory gives basis states that best describe quasiparticle tunneling for large voltages, 
not for V ~ 0. A theory is needed that solves for the Josephson effect exactly, 
with this solution then providing the basis states for understanding quasiparticle 
tunneling around V - 0. This goal is fulfilled by the theory of quasiparticle 
bound states, which we will describe next. 
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(a) VoS(X) (b) 
e ikx ikx 

e 
-ikx e ] roB(X) 

Fig. 8. Plot of potential vs. coordinate x with a positive delta-function tunnel barrier V03 (x). Scat- 
tering of plane wave states is shown in (a), whereas (b) is a plot of the bound-state wavefunction. 
The delta-function barrier is negative in (b), as required for producing a bound state. 

6. The Josephson effect, derived from quasiparticle bound states 

We begin our derivation of an exact solution for the Josephson effect with an ex- 
tremely powerful idea from mesoscopic physics: electrical transport can be cal- 
culated under very general conditions by summing the current from a number of 
independent "conduction channels", with the transport physics of each conduc- 
tion channel determined only by its channel transmission probability ri [23, 24]. 
For a Josephson junction, the total junction current lj can be written as a sum 
over all channels i 

l j  - -  ~ I j ( r i )  , ( 6 . 1 )  
i 

where I j ( r )  is the current for a single channel of transmission r, which may 
be solved for theoretically. For a tunnel junction, the number of channels is 
estimated as the junction area divided by the channel area ()~f/2) 2, where ~f is 
the Fermi wavelength of the electrons. Of course, the difficulty of determining 
the distribution of the channel transmissions still remains. This often may be 
estimated from transport properties, and under some situations can be predicted 
from theory[25, 26, 27]. 

Because transport physics is determined only by scattering parameterized by 
r, we may make two simplifying assumptions: the transport can be solved for us- 
ing plane waves, and the scattering from the tunnel junction can be described by 
a delta function. The general theory has thus been transformed into the problem 
of one-dimensional scattering from a delta function, and an exact solution can be 
found by using a simple and clear physical picture. 

Central to understanding the Josephson effect will be the quasiparticle bound 
state. To understand how to calculate a bound state[28, 29], we will first consider 

m 

a normal-metal tunnel junction and with a g-function barrier V03 (x), as illustrated 
in Fig. 8. For an electron of mass m and wavevector k, the wavefunctions on the 
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left and right side of the barrier are 

tilL = A e  ikx + B e  - i k x  , 

~ R  --  Ce  ikx , 

(6.2) 
(6.3) 

where A, B, and C are respectively the incident, reflected, and transmitted elec- 
tron amplitudes. From the continuity equations 

~L - ~PR 
d ~ L d Og l¢ 2 m Vo ~ q . t  R 

d x  d x  h 2 

evaluated at x = 0, the amplitudes are related by 

(6.4) 

(6.5) 

A+B  - -  C (6.6) 

i k A  - i k B  = i k C  2 m  Vo h2 C. (6.7) 

The transmission amplitude and the probability are 

C 1 
= (6.8) 

A 1 + i 0  
ICl2 1 

r - ~ = 1 £ 02 ,  (6.9) 

where 0 = m V o /h2 k .  The bound state can be determined by finding the pole 
in the transmission amplitude. A pole describes how a state of finite ampli- 
tude may be formed around the scattering site with zero amplitude of the in- 
cident wavefunction, which is the definition of a bound state. The pole at 
r/ = i gives kb = - i m V o / h  2, and a wavefunction around the scattering site 
~ R  --  C e(mV°/h2)x. This describes a bound state only when Vo is negative, as 
expected. 

A superconducting tunnel junction will also have bound states of quasiparti- 
cles excitations. These bound states describe the Josephson effect since virtual 
quasiparticle tunneling was necessary for the perturbation calculation in the last 
section. The Bogoliubov-deGennes equations describe the spatial wavefunc- 
tions, whose eigenstates are given by the solution of the Hamiltonian 

h2l¢ ) q)+eiXX 
Hgo+e iKx = -4-k f ~ f f z  -t- Aa x  , (6.10) 

m 

where ~o + e ixx are the slowly varying spatial amplitudes of the exact wavefunction 
~o+eiXXe+ikf x . As illustrated in Fig. 9, the 4 - k f K  term corresponds to the kinetic 
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Fig. 9. Plot of quasiparticle energies Ex verses momentum x near the + k f  Fermi surfaces. The 
two-component eigenfunctions are also displayed for each of the four energy bands. Also indicated 
are the quasiparticle states A-E used for the bound-state calculation. 

energy at the + k f  Fermi surfaces using the approximation ( k f  ÷K)2/2 '~ const.+ 
k f to . As expected for a spin-type Hamiltonian, the two eigenvalues are 

EK --"4-(~ 2 ÷ A2) 1/2 , (6 .11)  

where ~K - h 2 k f K / m  is the kinetic energy of the quasiparticle referred to the 
Fermi energy. The eigenvectors are also displayed in Fig. 9, where uK and 
vK are given by Eqs. 4.14 and 4.15. Because the two energy bands represent 
quasiparticle excitations, the lower band is normally filled and its excitations 
correspond to the creation of hole states. 

We can solve for the quasiparticle bound states by first writing down the scat- 
tering wavefunctions in the left and right superconducting electrodes. An in- 
coming quasiparticle state, point A in Fig. 9, is reflected off the tunnel barrier to 
states B and C and is transmitted to states D and E [30]. The wavefunctions are 
then given by 

(u) kp L m A e ixx e ixx e-iXx vei~ L ÷ B + C (6.12) uei4~L v e i ~ L  

(") kII R - -  D e - ixx + E e ixx 
uei4~R vei4~R , (6.13) 

where we have used the relations v _= vK = u-K and u = uK = v-K, and we have 
included the phases 4~L and 4~R of the two states. The continuity conditions Eqs. 
6.4 and 6.5, solved for both the components of the spin wavefunction, gives the 
matrix equation 
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Fig. 10. Plot of quasiparticle bound-state energies E j _  and E j+  vs. the phase difference 3 across 
the junction, for three values of tunneling transmission r.  Quasiparticles are produced by vertical 
transitions from the E j _  to E j+  band. As indicated by the arrow, the energy gap E j+  - E j _  is 
always greater than , f 2A  at 8 = rr /2.  

u - v  - u  v u B 

Ai:!  uei  i u - v ( 1  - i 20 )  u(1 + i2~) . (6.14) 
v - u e - i ~ ( 1  - i2r/) v e - ia ( 1  -t- i2r/) 

The scattering amplitudes for B - E  have poles given by the solution of 

(u 4 -t- v4)(1 + r/2) - 2(uv)2(r/2 -t- cosS) = 0 .  (6.15) 

Using the relations u 2 + v 2 = 1, E j  = Ek -- A ~2u v, and r = 1/(1 + 02), the 
energies of the quasiparticle bound states are 

E j+  = i A [ 1  - r sin2(~/2)] 1/2 . (6.16) 

Because these two states have energies less than the gap energy A, they are ener- 
getically "bound" to the junction and thus have wavefunctions that are localized 
around the junction. 

The dependence of the quasiparticle bound-state energies on junction phase is 
plotted in Fig. 10 for several values of r.  The ground state is normally filled, 
similar to the filling of quasiparticle states of negative energy. The energy E j _  
corresponds to the Josephson energy, as can be checked in the limit r ~ 0 to 
give 

Ar  Ar  
E j _  ~" - -  A -q c o s 3 .  (6.17) 

4 4 
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This result is equivalent to Eq. 5.9 after noting that the normal-state conductance 
of a single channel is 1/RN -- 2r /RK.  

The current of each bound state is given by the derivative of its energy 

2Jr OEj+ 
Ij+  -- , (6.18) 

¢'o 03 

in accord with Eq. 2.5. Since the curvature of the upper band is opposite to that 
of the lower band, the currents of the two bands have opposite sign Ij+  = - I j _ .  
For level populations of the two states given by f+, the average Josephson current 
is (Ij) = I j _ ( f _  - f+). For a thermal population, f+ are given by Fermi 
distributions, and the Josephson current in the tunnel junction limit gives the 
expected Ambegaokar-Baratoff result 

(i j)  = rc A(T)  sin6. ( 1 _ 1 ) 
2 eRN e-A~ kT + 1 eA/kT + 1 (6.19) 

yr A(T) 
-- ~ tanh(A/2kT) sin 8. (6.20) 
2 eRN 

7. Generation of quasiparticles from nonadiabatic transitions 

In this description of the Josephson junction, the Josephson effect arises from a 
quasiparticle bound state at the junction. Two bound states exist and have ener- 
gies E j + and E j_,  with the Josephson current from the excited state being of op- 
posite sign from that of the ground state. We will discuss here the small-voltage 
limit[31, 32], which can be fully understood within a semiclassical picture by 
considering that a linear increase in ~ produces nonadiabatic transitions between 
the two states. 

The junction creates "free quasiparticles", those with E > A, via a two-step 
process. First, a transition is made from the ground to the excited bound state. 
This typically occurs because a voltage is placed across the junction, and the 
linear change of 6 causes the ground state not to adiabatically stay in that state. 
For a high-transmission channel, the transition is usually made around ~ ~ zr, 
where the energy difference between the states is the lowest and the band bending 
is the highest. Because this excited state initially has energy less than A, the state 
remains bound until the phase changes to 2rr and the energy of the quasiparticle 
is large enough to become unbound and diffuse away from the junction. The 
quasiparticle generation rate is thus governed by d6/dt  and will increase as V 
increases. 
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Fig. 11. Plot of semiclassical solutions for the tunneling through a barrier (a) and tunneling through 
an energy gap (b). Imaginary solutions to k and 3 are used to calculate the tunneling rates. 

The quasiparticle transition rate can be predicted using a simple semi-classical 
method. We will first review WKB tunneling in order to later generalize this 
calculation to energy tunnelling. In Fig. ll(a),  we plot a cubic potential V ( x )  
versus x and its solution k 2 = 2 m [E - V ( x ) ] / h  2. The solution for k is real or 
imaginary depending on whether E is greater or less than V (x). A semi-classical 
description of the system is the particle oscillating in the well, as described by 
the loop in the solution of Re{k}. A solution in the imaginary part of k connects 
a turning point on this loop, labeled A, with the turning point of the free-running 
solution, labeled B. The probability of tunneling each time the trajectory passes 
point A is given by the standard WKB integral of the imaginary action 

W = (7.1) 

S ~ 

exp[-2S] 

( l /h)  f d x  I m p  

f x8 d x  I m k  . 
A 

(7.2) 

(7.3) 

The transition rate for a nonadiabatic change in a state may be calculated in a 
similar fashion. In Fig. 11 (b) we plot the solution of Eq. 6.16 for 3 versus E. In 
the "forbidden" region of energy I EI < A ~/1 - r, the solution of 3 has an imag- 
inary component. As the bias of the system changes and the system trajectory 
moves past point A, then this state can tunnel to point B via the connecting path 
in the imaginary part of 3. The probability for this event is given by Eq. 7.1 with 
S given by the integral of the imaginary action 

S = (1/h) f d E timag, (7.4) 
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Fig. 12. (a) Plot of average junction current (Ij) versus inverse DC voltage V for transmission co- 
efficients r = 0.8, 0.5, 0.2, and 0.01 (from Ref. [32] ). Solid lines are from exact calculation, and 
dashed lines are from predictons of Eqs. 7.8 and 7.6. The time dependence of the Josephson current 
Ij is plotted for the ground state (b) and for a transition (c), where the insets show the trajectory of 
the bound states a s  Ej vs. 3. 

where we define an imaginary time by 

timag - 
Im 

da / d t  
(7.5) 

Rewriting Eq. 6.16 as ( E / A )  2 = 1 - r(1 - c o s 3 ) / 2  and using d6 /d t  = (2e/h) V, 
one finds the action is given by the integral 

S = _,/l___TdE Im - a r c c o s  1 + (e 2 -  1 )2 / r  (7.6) 

A / (1 - r ) r r / 2  (r --~ 1) 
_~ x / l n ( 2 / r )  (r --~ 0) 

eV (1 - r ) [ l n ( 2 / r )  + , / ~ - ( r r / 2 -  ln2)]  , (interp.) 

where the last interpolation formula approximates well a numerical  solution of  
Eq. 7.6. The limiting expression for r --~ 1 gives the standard Landau-Zener  
formula appropriate for a two-state system. In the tunnel-junction limit r ~ 0 
one finds 

W = (r /2)  2zx/ev . (7.7) 

For the case of a constant DC bias voltage V, the total junction current (l j) 
may be calculated with this transition rate and an attempt rate 1-' = ( 2 e / h ) V  

516 J. M. Martinis 

given by the frequency at which 3 passes :r/2. Using Eq. 7.6 and setting the 
power of quasiparticle generation 2 A 1-' W to the electrical power (Ij) V, one finds 

2eA 
{Ij } -- - ~  W . (7.8) 

This prediction is plotted in Fig. 12(a) and shows very good agreement with the 
results of exact calculations[32]. Only the steps in voltage are not reproduced, 
which are understood as arising from the quantization of energy e V from mul- 
tiple Andreev reflection of the quasiparticles. The steps are not expected to be 
reproduced by the semiclassical theory since this theory is an expansion around 
small voltages, or equivalently, large quantization numbers. 

The junction current may also be determined from the energies of the two 
bound states. For a constant voltage across the junction, we use Eq. 2.5 to 
calculate the charge transferred across the junction after a phase change of 2zr 

fo 
2Zr/(da/dt) 

Qj - Ij dt (7.9) 

_- 2redo fo 2rr/(d~/dt) ~dUJd6 dt (7.10) 

[Ug(27r) - Ug(0)] (7.11) 

which gives the expected result that the change of energy equals Q j V. When the 
junction remains in the ground state, the energy is constant Uj (2zr) - Uj (0) = 0 
and no net charge flows through the junction. Net charge is transferred, however, 
after a transition. The charge transfer 2 A / V  multiplied by the transition rate 
gives an average current Qj F W that is equivalent to Eq. 7.8. 

Equation 6.18 may be used to calculate the time dependence of the Josephson 
current, as illustrated in Fig. 12(b) and (c). When the system remains in the 
ground state (b), the junction current is sinusoidal and averages to zero. For 
the case of a transition (c), the current before the transition is the same, but the 
Josephson current remains positive after the transition (see Eq. 5.4 of Ref. [32]). 
The transition itself also produces charge transfer from multiple-Andreev reflec- 
tions(MAR) [31, 33] 

Q M A R  - "  2A(1 - - c ) I / 2 / V .  (7.12) 

This result is perhaps surprising - the junction current at finite voltage arises from 
transfer of charge QMAR and a change in the Josephson current. The relative 
contribution of these two currents is determined by the relative size of the gap 
in the bound states. For r ~ 1 , all of the junction current is produced by 
Josephson current, whereas for r --+ 0 (tunnel junctions) the current comes from 
Q M A R .  
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For small voltages, the transition event must transfer a large amount of charge 
QMAR in order to overcome the energy gap. In comparing this semi-classical 
theory with the exact MAR theory, QMAR/e has an integer value and represents 
the order of the MAR process and the number of electrons that are transferred 
in the transition. This description is consistent with Eq. 7.7 describing the 
transition probability for an n-th order MAR process, where n - 2A/e  V, and 
r /2  represents the matrix element for each order. 

From this example it is clearly incorrect to picture the quasiparticle and 
Josephson current as separate entities, as suggested by the calculations of per- 
turbation theory. To do so ignores the fact that quasiparticle tunneling, arising 
from a transition between the bound states, also changes the Josephson contribu- 
tion to the current from 3 = Jr to 27r. 

8. Quasiparticle bound states and qubit coherence 

The quasiparticle bound-state theory can be used to predict both the Josephson 
and quasiparticle current in the zero-voltage state, as appropriate for qubits. In 
this theory an excitation from the E j_  bound state to the E j+ state is clearly 
deleterious as it will change the Josephson current, fluctuating the qubit fre- 
quency and producing decoherence in the phase of the qubit state. For an exci- 
tation in one channel, the fractional change in the Josephson current is ~ 1 INch, 
where Nch is the number of conduction channels. The subgap current-voltage 
characteristics can be used to estimate Nch, which gives an areal density of 

104//~m 2 [10, 34]. For a charge qubit with junction area 10-2#m 2, the 
qubit frequency changes fractionally by ~ 1/Nch "~ 10 -2 for a single excitation, 
and gives strong decoherence. Although the phase qubit has a smaller change 
(1/Nch)Io/4(Io -- I) ,~ 2 x 10 -5, the excitation of even a single bound state is 
clearly unwanted. 

Fortunately, these quasiparticle bound states should not be excited in tunnel 
junctions by the dynamical behavior of the qubit. The E j_  to E j+ transition 
is energetically forbidden because the energy of the qubit states are typically 
choosen to be much less than 2A. Thus, the energy gap of the superconductor 
protects the qubit from quasiparticle decoherence. 

If a junction has "pinhole" defects, where a few channels have r ~ 1, then 
the energy gap will shrink to zero at 6 = 7r. However, only the flux qubit will be 
sensitive to quasiparticles produced at these defects since it operates near 6 -- rr. 
In contrast, the phase qubit always retains an energy gap of at least ~/2A around 
its operating point 3 = Jr/2 (see arrow in Fig. 10). We note this idea implies 
that a phase qubit can even be constructed from a microbridge junction, which 
has some channels[26] with r --- 1. Although the phase qubit is completely 
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insensitive to pinhole defects, this advantage is probably unimportant because 
Al-based tunnel junctions have oxide barriers of good quality. 

Pinhole defects also change the Josephson potential away from the -cos6 
form. This modification is typically unimportant because the deviation is smooth 
and can be accounted for by a small effective change in the critical current. 

The concept that the energy gap A protects the junction from quasiparticle 
transitions suggests that superconductors with nonuniform gaps may not be suit- 
able for qubits. Besides the obvious problem of conduction channels with zero 
gap, channels with a reduced gap may cause stray quasiparticles to be trapped at 
the junction. The high-Tc superconductors, with the gap suppressed to zero at 
certain crystal angles, are an obvious undesirable candidate. However, even Nb 
could be problematic since it has several oxides that have reduced or even zero 
gap. Nb based tri-layers may also be undesirable since the thin A1 layer near 
the junction slightly reduces the gap around the junction. In contrast, A1 may 
not have this difficulty since its gap increases with the incorporation of oxygen 
or other scattering defects. It is possible that these ideas explain why Nb-based 
qubits do not have coherence times as long as A1 qubits[6, 10]. 

9. Summary 

In summary, Josephson qubits are nonlinear resonators whose critical element is 
the nonlinear inductance of the Josephson junction. The three types of super- 
conducting qubits, phase, flux, and charge, use this nonlinearity differently and 
produce qubit states from a cubic, quartic, and cosine potential, respectively. 

To understand the origin and properties of the Josephson effect, we have first 
reviewed the BCS theory of superconductivity. The superconducting phase was 
explicitly shown to be a macroscopic property of the superconductor, whose clas- 
sical and quantum behavior is determined by the external electrical circuit. After 
a review of quasiparticle and Josephson tunneling, we argued that a proper mi- 
croscopic understanding of the junction could arise only from an exact solution 
of the Josephson effect. 

This exact solution was derived by use of mesoscopic theory and quasiparticle 
bound states, where we showed that Josephson and quasiparticle tunneling can be 
understood from the energy of the bound states and their transitions, respectively. 
A semiclassical theory was used to calculate the transition rate for a finite DC 
voltage, with the predictions matching well that obtained from exact methods. 

This picture of the Josephson junction allows a proper understanding of the 
Josephson qubit state. We argue that the gap of the superconductor strongly pro- 
tects the junction from quasiparticle tunneling and its decoherence. We caution 
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that an improper  choice  of  mater ia ls  migh t  give decoherence  f rom quasipar t ic les  
that are t rapped at sites near  the junct ion.  

We bel ieve a key to future success is unders tanding  and improv ing  this re- 
markab le  nonl inear i ty  of  the Josephson  inductance.  We hope  that the picture 
given here  of  the Josephson  effect will  help researchers  in their quest  to make  
bet ter  superconduct ing  qubits. 
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1. Introduction 

The present chapter is devoted to a particular type of electrical circuit that has 
been used to develop solid state quantum bit prototypes. These circuits being 
superconducting and involving tunneling of Cooper pairs between two super- 
conducting electrodes, they belong to the family of Josephson qubits previously 
introduced in this book [1]. They are all based on the same simple device, the 
Cooper pair box (CPB), and are all driven by a gate electrode coupled to the 
charge of a small electrode. For that reason, they are often considered as form- 
ing the so-called "charge qubits" sub-family, although they essentially share the 
same physics with other Josephson qubits [2, 3]: their quantum state can be eas- 
ily manipulated, whereas reading this state out with a high efficiency is a difficult 
task. Moreover, preserving their quantum coherence is a challenge (even at ultra 
low temperature) due to their "macroscopic" character. 

This chapter is organized in six sections. After this introduction, the second 
section presents the Cooper pair box device in its basic version and in its im- 
proved version: the split CPB. The energy spectrum is derived as a function of 
the external parameters controlling the Hamiltonian and the physical properties 
of the corresponding eigenstates are pointed out. In the third section, we show 
how the two lowest energy eigenstates form a qubit, how this qubit can be ma- 
nipulated with DC voltage pulses or resonant microwave pulses, and how it can 
be measured following various strategies. Three experiments that have demon- 
strated coherent control of the CPB state are also presented. Then, in section 4, 
we present a very simple approach to decoherence in CPBs. Considering a par- 
ticular CPB device (the Quantronium) as an example, we list its different possible 
decoherence sources and we calculate the different physical quantities that char- 
acterize how coherence of its quantum state is lost. From these considerations, 
we infer design rules for Josephson qubits. Then, we present different exper- 
iments that have been used to measure the effective coherence time of a real 
device. Finally, we address in section 5 the problem of making a 2-qubit-gate 
with two capacitively coupled CPBs. 
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2. The Cooper pair box 

2.1. The basic Cooper pair box circuit 

Gate Gate Supercon- Superconducting 
Voltage Electrode duc t i ng  Reservoir 
Source 

~ ,  Tunnel Junction 

Cg Ej,Cj 

Fig. 1. The basic Cooper pair box. Top: Schematic representation of the Cooper pair box showing 
the superconducting island and reservoir, the Josephson junction with energy E j and capacitance 
C j, the gate, and the voltage source Vg. Bottom: Corresponding electrical schematic drawing. 

The basic Cooper pair box (CPB) is the simplest device which combines 
Josephson [4] and Coulomb blockade effects [5]. It is a simplified version of 
a Josephson device proposed in 1987 [6], and consists [7] of a small BCS su- 
perconducting electrode, called the island, connected to a BCS superconducting 
reservoir by a Josephson junction with capacitance Cj and Josephson energy E j. 
The island can be biased by a voltage source Vg in series with a gate capacitance 
Cg (see Fig. 1). In addition to E j,  the box has a second characteristic energy, the 
Coulomb energy Ec of a single Cooper Pair in excess in the island, with respect 
to electrical neutrality: 

(2e) 2 
Ec = , (2.1) 

2Cr~ 

where C~ = Cg Jr- C j is the total capacitance of the island and e the electron 
charge. CPBs fabricated by conventional electron beam lithography having a 
capacitance C~ in the fF range (typical size of the junctions is 100nm × 100nm), 
Ec is typically of order of a few kB K (kB is the Boltzmann constant). When the 
thermal energy k~ T is reduced much below the BCS superconducting energy gap 
A of the electrodes, and when Ec < 4 A ,  all the electrons in the island and in 
the reservoirs are paired [8]. The Cooper pairs can tunnel through the Josephson 
junction and the only remaining degree of freedom of the system is the integer 
number N of Cooper pairs in excess or deficit on the island. Due to tunneling, N 
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A 

fluctuates quantum mechanically and has to be treated as an operator N, whose 
eigenstates IN)c (index c stands for "pure charge" ) obey 

A 

NIN>c=NIN>c,  N ~ Z  

and form a complete basis for the quantum states of the box. 
A Introducing the operator 0 conjugated to N by the dimensionless relationship 

[0, N] = i, one defines the variable 0 E [0, 2n [, which is the phase of the Cooper 
pair condensate in the island. From the conjugation relationship, one deduces the 
effect of the operators exp(i0) and exp(-i0) on charge states: 

exp(+i0) IN)c = IN + 1)c. (2.2) 

The Hamiltonian of the CPB can now be expressed as a function of the N and/or 
0 operators. 

2.2. Hamiltonian and energy spectrum 

The Hamiltonian of the whole CPB circuit (including its voltage source) is writ- 
ten: 

H(Ng) = nel + H% -- Ec(N- Ng) 2 - E j  cos0", (2.3) 

where the first term corresponds to the electrostatic energy of the circuit, Ng = 
Cg Vg/(2e) being the reduced gate charge, and where the second term accounts 
for the energy cost of a phase difference 0 across the Josephson junction and is 
responsible for the tunneling of Cooper pairs. In order to find the eigenenergies 
and the corresponding eigenstates of the system, (2.3) is rewritten in a form in- 
volving only N or only 0. Using (2.2), one finds the Hamiltonian in the charge 
representation, 

H -- ~ Ec(N- Ng) 2 IN>c <Nlc - --~(IN>c <N + llc + IN + l>c <Nlc) • 
NeZ 

(2.4) 

The energy spectrum associated to this Hamiltonian is discrete and periodic in 
Ng with period 1. We call Ik> the energy eigenstates and Ek their associated 
energies sorted in increasing order, starting from k = 0 for the ground state: 

A 

H Ik> = Ek Ik>, k ~ N. (2.5) 

For a given Ng, the lowest energy eigenstates can be found in the charge repre- 
sentation by truncating the pure charge state basis and by diagonalizing a finite 
version of the matrix that corresponds to (2.4). 

A 
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V 
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Ng Ng 

Fig. 2. Top: Energy levels of a Cooper pair box, normalized by the Cooper pair Coulomb energy 
EC, as a function of the gate charge bias Ng, and for Ej/Ec ratios equal to 0.1 (left) and 1 (right). 
Bottom: Corresponding expectation values of the dimensionless box charges (N), for the energy 
eigenstates 10) (solid lines) and I1) (dotted lines). 

A 

Using N = (I / i )0/00 in (2.3), one instead obtains the Hamiltonian in the 
phase representation and the Schr6dinger equation for the qJk(0) - (0 Ik) wave- 
functions" 

1 0 Ng)2~.Pk(O)- Ej cos(0)qJ~(0) -- E~k(O). (2.6) EC(7 
1 O0 

Both representations can of course be used equivalently to find the energy spec- 
trum, which depends on Ng and on the Ej/Ec ratio, as shown on Fig. 2. When 
Ej/Ec << 1, the energy levels are very close to the electrostatic energies, ex- 
cept in the vicinity of the so-called charge degeneracy points defined by Ng = 
1/2 (mod 1), where the degeneracy between the two lowest energy charge states 
is lifted up by an amount Ej .  With increasing Ej/Ec, the modulation by Ng of 
the lowest eigenenergies becomes weaker and weaker. 

It is interesting to note that except for precise combinations of Ej/Ec and 
Ng values, the energy spectrum of a CPB is highly anharmonic. Consequently, 
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manipulating 10) and I1) without exciting higher energy states is possible. These 
two states are thus regarded as defining a qubit. We now compute explicitly the 
10) and I1 ) states in order to evaluate their physical properties, which will be used 
to measure the quantum bit state. 
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Fig. 3. Eigenenergies (middle panels) and wavefunctions of the 10) and I1) states in the charge and 
phase representations, for Ng = 0 (left panels) and for Ng = 1/2 (right panels), and for Ej/E C ra- 
tios equal to 0.1 (top panels) and 1 (bottom panels). The qJk (N) eigenvectors are directly represented 
since they can be chosen real, whereas the qJk (0) wavefunctions are represented by their modulus 
squared. 
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2.3. Eigenstates in the charge and phase representations 

Over an Ng period like the interval [0, 1] and for E j / E c  < 2, the energy eigen- 
states Ik) = ~ akN IN)c can be found with a high accuracy by simply diago- 

NEZ 
nalizing a matrix (2.4) truncated to only seven charge states. The corresponding 
qJk(0) functions can be found by Fourier transform of the Ik)'s expressed in the 
charge representation or by solving directly the Schrrdinger equation (2.6). This 
equation is close to a Mathieu equation and its solutions are [9] 

Ek -- Ec.A/la(k + 1 - (k + 1)/4[mod 2] + 2ng(-1)  k, q) 
exp(iUgO) (a, o) + i(_l)k+  , o)] , (2.7) qJk(O) = ~ [A4c q, 1.A4s(a q, 

where a = 4Ek/Ec,  q = - 2 E j / E c ,  .A4c and M s  are the even and odd Math- 
ieu functions, and ./~a is the function giving the characteristic values of .A4c. 
Figure 3 shows the two lowest stationary states 10) and I1) both in the charge and 
phase representations, for Ng = 0 and Ng = 1/2, and for two different E j / E c  
ratios. For E j / E c  << 1, the situation is rather simple since 10) and I1) are very 
close to the pure charge states 10)c or I1)c at Ng ~ O, and correspond to the 
symmetric and antisymmetric superpositions of these charge states at Ng = 1/2. 
In this limit, it is useful to restrict the basis to (10)c, I1)c), so that the Hamil- 
tonian looks like that for a spin 1/2 (like any other two-level-system [ 10]), after 
dropping out a constant term that depends on Ng only: 

n -- 5 . n ,  (2.8) 
2 

where 5 -- 6xY + 6y ~ + 6z z is the vector of Pauli matrices and h - Ej:~ + 
Ec(1 - 2Ng)-~. Introducing the angle ot = arctan [ E j / { E c ( 1  - 2Ng)}], the 
eigenenergies and the eigenstates are in this case qz E j  ~/1 + cot 2 c~ and 

10) - cos (c~/2)10)c + sin (or/2)I1) c (2.9) 
I1) - - sin (c~/2)10)c + cos (c~/2)I1)c ' 

respectively. For E j / E c  ~ 1, the 10) and I1) states are, for any Ng, made up 
of coherent superpositions with significant contributions from at least three or 
four pure charge states (see Fig. 3), so that neither 0 nor N are "good quantum 
numbers". 

2.4. Expectation value of the box charge 

The expectation value of the charge on the island or its dimensionless equivalent 
(N~) = (kl N Ik) is an interesting quantity which can be used to discriminate 
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10) from I1), and thus to read out a CPB-based-qubit. It depends linearly on the 
derivative of the energy levels with respect to Ng: 

0121 = 2Ec(Ng - N )  ~ (Nk) = Ng 1 0 E k  
ONg 2Ec ONg 

(2.10) 

It is plotted in Fig. 2 for the two regimes already considered. For Ej /Ec  << 1 
and close to half integer values of Ng, (No) and (Nj) vary as opposite rounded 
staircases. Within the two charge states approximation, one deduces from (2.9) 
the shape of the steps for Ng E [0, 1]" (No) - sin 2 or/2 and (N1) - cos 2 c~/2. 
When Ej /Ec  is increased, the steps are more and more rounded and have to 
be calculated numerically. It is important to note that the difference AN10 = 
(N1) - (N0) vanishes at the charge degeneracy points. 

2.5. The split Cooper pair box 

.... ',,, 

I~.-- 

Ej(I+O)/2 

Ej(1-d)/2 

Fig. 4. The split Cooper pair box. Top: Schematic representation showing the island, the two Joseph- 
son junctions connected to form a grounded superconducting loop, the gate circuit, and the magnetic 
flux bias. Bottom: Corresponding electrical drawing. 

The split Cooper pair box is an improved CPB with a tunable Josephson en- 
ergy and a second access port. It is obtained by splitting its Josephson junc- 
tion into two junctions with respective Josephson energies E j(1 + d)/2 and 
E j(1 - d)/2, where d ~ [0, 1] is an asymmetry coefficient (see Fig. 4). These 
two junctions are connected together to form a superconducting loop which can 
be biased by a magnetic flux ~. Notice that the split CPB is similar to another 
Josephson device, the Bloch transistor [11] (also called the single Cooper pair 
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transistor) that was first described in 1985. The split box hasAtwo deAgrees of free- 
dom, which can be chosen either as the phase differences 61 and 62 across each 

A A A A 

junction, or as the linear forms 0 = (61 - 62)/2 and 3 = 61 -~- 62, which represent 
the phase of the island introduced previously and the phase difference across the 
series combination of the two junctions, respectively. The conjugate variable of 6 
is the integer number K of Cooper pairs which tunneled through both junctions. 

The electrostatic "Hamiltonian" of the split CPB is that of a basic box [see 
(2.3)] with C j representing now the sum of the two junction capacitances. Its 
Josephson "Hamiltonian" is the sum of the Josephson terms of the two junctions: 

H"~ = - E j --~-I + d cos(6~) - E j 1 -2 d cos(62) 
A A 

= - E j  cos(~) cos(0) + d E j  sin( ) sin(0") . 

(2.11) 

(2.12) 

The superconducting loop of a split CPB is designed such that its self induc- 
tance L is very small compared to the junction inductance L j -- q92/Ej, with 

~oo = h/2e. Consequently, the magnetic potential energy term ~oog - q~ / 2 L  

attached to this inductance strongly fixes 6, which can be considered as a classi- 
cal parameter 6 = ~/~oo imposed by the magnetic flux. Finally, the Hamiltonian 
of the split box is 

t~ ( N g ,  3) = E c ( N  - Ng)  2 - E ~ ( d ,  6) C0S[0"+ "{'(d, 3 ) ] ,  (2.13) 

with [ 12]: 

* (d 6) = E j ¢  l+d2+(1-d2)c°s(r~) / 
E j  , 2 
tan T (d, 6) = -d  tan (~ ) .  

(2.14) 

A symmetric or almost symmetric (d ~ 0) split CPB is thus equivalent to a 
basic CPB but with a magnetostatically tunable [7] Josephson energy E~ = 
E j cos(6/2). Its energy spectrum (see Fig. 5) is periodic in Ng (period 1) and 
2re-periodic in 6, and can now be tuned by both the electric field applied to the 
gate electrode and by the magnetic flux threading the superconducting loop. For 
that reason, the split CPB has often been presented as a kind of artificial atom 
showing strong Stark and Zeeman effects. 

Splitting the box has also a second interest: it opens a second access port to 
the device, which can be used to read out its quantum state [ 13-15]. The quantity 
to be measured on this port is the persistent current in the superconducting loop, 
its phase equivalent across the loop inductance, or the magnetic flux it produces. 
This persistent current is calculated below. 
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N g 0 Ej / E c = 1.0 
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Fig. 5. Two lowest energy levels of a split Cooper pair box with Ej / EC - 1, as a function of the two 
external parameters Ng and 3. The energy is normalized by the Cooper pair Coulomb energy EC. The 
asymmetry coefficient d = 2% chosen here lifts up an energy degeneracy at (Ng = 1/2, 3 = +n). 

2.6. Expectation value o f  the persistent current in the split box 

Ej = E c = lkBK - d = 2% 

~ 0 . . . . .  0 "" -  

- 1 0 ~  ~io~ I ' ' ~  I -10 
0 Jr 21r 0 Jr 2~ 

8 (rad) 8 (rad) 

Fig. 6. Expectation value of the persistent loop currents (i0) for the ground state (solid line), and (il) 
for the first excited state (dotted line), calculated for EC = Ej = 1 kBK, d = 2%, Ng = 0 (left 
panel) and Ng = 1/2 (right panel). 

A A 

T h e  ~ and  K opera to r s  be ing  c o n j u g a t e  to each  other ,  the  ope ra to r  a s soc ia ted  
to the  cu r ren t  c i r cu la t ing  in the  loop  of  the  spli t  C P B  is 

A 

~. d K  ( 
I --  ( - 2 e )  ~ --  ( - 2 e )  - - ~  

A 

1 OH) . (2.15) 
h 08 

T h e  ave rage  loop  cu r ren t  (ik) o f  state Ik) fo l lows  thus  the  g e n e r a l i z e d  J o s e p h s o n  
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relation 

(ik(Ng, 3))= (k 1I~ k} = 1 OE~(Ng, 3) . (2.16) 
qgo 03 

Like the energy spectrum, (i~) currents are also 2rr-periodic in 3 and 1-periodic 
in Ng, the extrema of (i0) and (il) being of the order of Ej/9o. Also, for Ng 
close to 1/2 and Ej < 3Ec, (i0} and (il) have opposite signs, as shown in Fig. 6. 
Note that the difference Ail0 = (il} - (i0) vanishes at 3 = 0 for all Ng. 

Given the physical properties of the 10} and I1) CPB's states, we can now 
consider the different strategies for implementing, for driving and for reading a 
qubit based on these states. 

3. The Cooper  pa ir  box  as a quan tum  bit  

As previously mentioned, the two orthogonal states chosen to define a CPB- 
based-qubit are its two lowest energy eigenstates 10) and I1). By varying Ng, the 
quantum state of the box can be manipulated within this subspace, provided that 
the temperature is sufficiently low, that the Ng excursion is limited, and that the 
anharmonicity of the energy spectrum is large enough. To implement a qubit, the 
CPB has also to be coupled to a readout device able to discriminate its two states 
at a certain measuring point (Ngm, 3m) in the space of the external parameters 
controlling its Hamiltonian. We consider here the case of a coupling between the 
box and its readout, weak enough so that it does not modify significantly the 10) 
and I1) states of the uncoupled box. When all these conditions are fulfilled, the 
CPB can be regarded as a fictitious dimensionless spin 1/2, b, with a Hamiltonian 

A 1 
H (Ng, 3) = 2b.ffI (Ng, 3) . (3.1) 

This Hamiltonian can be expressed in any frame R {£, ~, ~} defined by 

ffl (Ngo, 30) = hvol (Ngo, 30)-z (Ngo, 30) (3.2) ahlaN .  = 0  

where v01 (Ng, 3) is the transition frequency between 10> and I1> and (Ng0, 30) 
is a particular point in the parameter space. Note that the frame introduced with 
(2.8) when Ej /Ec  << 1 is a limit case, for which the reference states 10)c and 
I1)c are almost equal to 10) and l l> for Ng0 far away from the charge degeneracy 
point. The time variation of the spin state can be visualized in the so-called Bloch 
sphere picture, where the general quantum state 

cos(Ou/2) exp(-iqgu /2)10) + sin(Ou/2)exp(iqgu/2)I1} , (3.3) 



3.1. Manipulation of the Cooper pair box quantum state 
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is represented by a vector with polar coordinates Ou and ~Ou, precessing around H 
with a frequency [HI/h. We now consider the different ways of modifying H in 
order to manipulate ~. 

Z = Z  ' 

II0) 

.4.11 

Fig. 7. Bloch sphere representations showing how the CPB state has been manipulated in two differ- 
ent types of experiments. The left sphere with two adjacent pure charge states at the north and south 
poles corresponds to a CPB with E j / E c  < < 1, which is driven to the charge degeneracy point with 
a fast dc gate pulse. The fight sphere with energy eigenstates at the poles describes within the rotat- 
ing wave approximation how a CPB is driven with microwave voltage pulses (see text for detailed 
explanation). The spin is represented by a thin arrow whereas fields are represented by bold arrows. 
The dotted lines show the spin trajectory, starting from the ground state. 

3.1.1. Constant perturbation applied suddenly to the Hamiltonian 
The first method that was used experimentally in 1999 [ 16] to prepare a CPB- 
based-qubit in a coherent quantum superposition of its 2 states consists in apply- 
ing to its gate (or to a second gate specially designed for that purpose) a trape- 
zoidal Ng pulse with rise and fall times much shorter than 1/VOl. This method 
was implemented on CPBs with E j / E c  << 1, the gate charge being initially 
tuned at a value Ng of the order of 0.3 during a time long enough so that the 
qubit has relaxed to its ground state 10) -~ 10)c. On the Bloch sphere drawn in 
the pure charge state referential (see left p ~ e l  of Fig. 7), the initial situation cor- 
responds to the spin parallel to the vector H - E j x  -k- Ec(1 - 2Ng)-~, the latter 
making a small angle do ~ E j / E c  (1 - 2Ng) << 1 with ~. Then Ng is brought 
suddenly to NgO -- 1/2 in a time so short that the evolution of the spin during 
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this transition is negligible. Now H -- E j £  induces the Rabi precession of the 
spin around the x axis at the Rabi frequency 

1)Rabi  = E j / h .  (3.4) 

After a time t, the coherent superposition that is built has a weight cos 2 a0 • 
sin 2 VRabit on I1)¢. Ng is then brought back suddenly to its initial value. The 
qubit precesses then around the initial H and can be measured (see section 3.2) 
in the (10)c, I1)c) ~ (10), I1)) basis. Any superposition state, i.e. any point on 
the Bloch sphere can thus be reached in a time shorter than [Ej/2  + Ec(1 - 
2Ng)]/h, by applying first a single pulse and by waiting then during a precise 
time. Besides, it is interesting to notice (the result will be used in section 5 ) that 
if ANg = Ngo - 1/2 -¢ 0, the maximum probability to measure the qubit in state 
I1)c after a single pulse is strongly reduced as 

1 (3.5) 
1 + ( 2 E c A N g / E j )  2" 

The present driving method has been used successfully by two research groups 
[16, 17]. It has the great advantage of inducing fast Rabi oscillations that can 
be observed even if the coherence time is rather short. On the other hand, one 
needs a very fast pulse generator with rise and fall times well below 100 ps. An 
alternative to this method is to use a harmonic perturbation. 

3.1.2. Harmonic perturbation applied to the Hamiltonian 
A second way to build superposed states is to apply a small resonant or almost 
resonant harmonic perturbation to the spin following the techniques developed 
in atomic physics and in Nuclear Magnetic Resonance. More precisely, a mi- 
crowave pulse ANg cos(2Jrvuwt + qg), with Vuw ~ vol, is added to the DC gate 
voltage and introduces in the Hamiltonian (2.13) a perturbation, which is written 
in the spin formalism as: 

klex = 4ECANg cos(Zrrvuwt + qg) [(ll N 10) ~ + AUl0~]. (3.6) 

When Vuw is close to v01, the effect of the longitudinal part klex.-~ on the motion 
of 6 can be neglected. Moreover the CPB is usually op ia t ed  at the charge de- 
generacy point (see section 2) where AN10 -- 0, so that Hex.-Z = 0. We are thus 
left with the transverse perturbation whose effect on 6 is simpler to describe in 
a f r a m e R ' - "  f '  ~ Withinthe {x, , ~'} rotating at the frequency vuw around ~t = . 
so-called rotating wave approximation [ 18], the free Hamiltonian and the pertur- 
bation correspond in R t to: 

171 = hay  ~' with Av = 1 3 0 1  - 1)/zw (3.7) 

fle~ ~ hvRo[£'COS~O + ~' sin~0] with vn0 = 2EcANg (11 ,~10) /h .  (3.8) 
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When no microwave signal is applied to the gate, ~ precesses freely in R I around 
~I at the detuning frequency A v, whereas during microwave pulses, it precesses 
around H + Hex (see right panel of Fig. 7) at the Rabi frequency 

VRabi = VRO 1 + ~ , 
VRO 

which is proportional to the dimensionless microwave amplitude ANg when de- 
tuning A v is chosen well below vR0. Starting from 10), the probability to measure 
I1) after a single pulse with effective duration t is thus cos 2 oe~ sin 2 V Rab i  t, with 
tan (o~;) = vRo/Av.  Note that the rise and fall time of the microwave pulses 
do not need to be short and that the precession axis and the Rabi frequency are 
tunable through the three parameters ANg, v , w ,  and ~0. Moreover, any single 
qubit gate (i.e. any rotator operating on the Bloch sphere) can be implemented 
with a sequence of resonant pulses along 2 f and ~r only [19], and all the tricks 
developed in NMR like composite pulse techniques [ 18] are applicable. This mi- 
crowave driving method has been successfully applied to a split box [20] with 
E j / E c  ~ 1, and also to phase [2] and flux [3] Josephson qubits. 

3.1.3. Adiabatic acceleration 
Finally, we also mention here an alternative way to perform a rotation around ~I, 
using a technique transposed from the "Stark pulse technique" known in atomic 
physics [21]. It consists, starting from a freely evolving superposed state 

a 10) + bexp [2n'v01 (Ngo, 30)t] [1), 

in applying a closed adiabatic variation of the extemal parameters Ng and 3 away 
from and back to the working point (Ngo, 60) in order to decrease or increase 
temporarily the deterministic relative dephasing speed 2Try01 (Ng, 3) between 
components 10)(Ng, 3) and I1)(Ng, 3), without changing their weights. This 
method has been successfully tested with the split box mentioned above by mov- 
ing adiabatically Ng away from and back to (Ngo = 1/2, 30 -- 0) along the bold 
line of Fig. 12. 

3.2. Readout of Cooper pair box quantum states 

Many different strategies [ 13-16,22-24,26,27] have been proposed to distinguish 
the 10) and I1) states of a CPB. For some of them, the readout is coupled to the 
box charge whereas for others, it is coupled directly or indirectly to the 3 phase 
degree of freedom of a split box. In all cases, an important distinction is whether 
the readout device is designed to perform a projective measurement onto some 
10) I and I1)f states close to 10) and I1), or if it designed to perform a non projective 
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measurement involving a relaxation process of the box from I1) to 10). A second 
characteristic is whether the readout is designed to be switched off during the box 
manipulation and then switched on to measure it with a signal to noise ratio larger 
than 1 in a single shot, or if it is designed to measure continuously a box which 
is periodically prepared in the same coherent state, so that the signal becomes 
detectable only after many repetitions. Although almost all possibilities have 
been considered in theoretical proposals, we describe below only the methods 
that have been really implemented experimentally. A last important property that 
will be considered in section 4 is the back-action that the readout induces onto 
the qubit and that can limit its coherence time. 

3.2.1. Box charge used to build a current through an additional tunnel junction 
At a time when no ultrasensitive electrometer would have been fast enough to 
discriminate the average charges (NI) and (No) of a CPB-based-qubit in a time 
shorter than its relaxation time, Y. Nakamura and co-workers added to a split 
CPB with E j / E c  << 1 a clever readout, which demonstrated in 1999 the first 
Rabi oscillations of an electrical circuit (see Fig. 8). A small and very opaque 
additional tunnel junction is connected to the island and biased with a voltage 
V such that an extra Cooper pair can enter the island and be broken into two 
electrons which then tunnel sequentially through the junction with rates [~qpl 
and Fqp2 [16]. In the 10) state, this cyclic process gives rise to a finite current 
through the junction, the Josephson quasiparticle current (JQP) [28]. When the 
box is in its I1) state at Ngo ~ 0.2 - 0.4 with (N1) ~ 1, it relaxes to its 10) state 
with (No) ~ 0 in a single JQP cycle with a relaxation rate I'qpl. By repeating 
rapidly the preparation of the I1) state, the JQP current can then be made larger 
than in the 10) state, the difference being used to measure the qubit state. Note 
that the coupling between the box and the readout being weak, the measured 
states are very close to 10) and I1), although the measurement is not projective 
and resets automatically the qubit to 10). This method is by design not single shot 
and the voltage V is applied continuously while the same preparation of the state 
is repeated, using the fast trapezoidal Ng pulse technique described in section 
3.1.1. 

3.2.2. Capacitive coupling to an electrometer 
The most natural way for discriminating the two CPB states is to measure the 
expectation value (N) of its island charge by coupling it capacitively to an elec- 
trometer. The basic single electron transistor (SET) [5] was the first electrometer 
used to characterize the 10) state of a CPB by measuring the 2e periodic Coulomb 
staircase [7] mentioned in section 2.4. This device has a maximum bandwidth of 
a few kHz and is far from being fast enough to measure the I1) state before it 
relaxes to 10). A faster version of the SET, the RFSET, was invented in 1998 [25] 
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Fig. 8. First demonstration of quantum coherent control of an electrical circuit by Y. Nakamura et al. 
Top: simplified diagram of the setup, which includes a CPB and a readout made of a voltage biased 
additional opaque tunnel junction connected to the island. When fast DC pulses are applied repeti- 
tively to the CPB gate, the Josephson quasiparticle current I through the readout junction reflects the 
occupation probability of the CPB charge states 10) c and I1)c (see text). Bottom: Rabi oscillations of 
the CPB state measured by the variation of I. Courtesy of Y. Nakamura et al., NEC, Japan. 

and was used by E Delsing et al. [ 17] to measure a split CPB with E j / E c  << 1, 
using the setup shown in Fig. 9. This RFSET includes a SET made up of an island 
defined by two tunnel junctions in series, biased with a voltage source. At DC 
voltages lower than or of the order of the Coulomb gap, the IV curve of the SET 
is modulated by the average charge of the CPB capacitively coupled to its island. 
By inserting the SET in parallel with the capacitance of a tank circuit that res- 
onates in the radiofrequency domain and by applying a quasi-resonant RF signal 
to the ensemble, one measures a reflection coefficient that depends on the charge 
coupled to SET. The coupling between the RFSET and the CPB being weak, this 
readout is of the projective type. Besides, it can in principle be switched on and 
off with both the DC voltage and the RF input signal. Moreover, its sensitivity 
of the order of lO-Se/~/Hz is high enough and its back-action onto the qubit 
during the measurement is low enough that it can be operated in a single shot 
mode [27], provided that the qubit relaxation time is larger than or of order 1/zs. 
Unfortunately, at the time of writing (2003), it has proved difficult to measure a 
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CPB in this mode. Rabi oscillations [17] were demonstrated over a few nanosec- 
onds with the fast trapezoidal Ng pulse technique and with the RFSET operated 
in the continuous mode (see Fig. 9). 

An important point to notice is that a CPB-based-qubit measured through its 
average charge (N) is usually in the regime E j / E c  << 1, for which the signal 
AN10 ~ 1 is maximal as soon as Ng ~: 1/2. Consequently, its Coulomb energy 
Ec is rather high and its Hamiltonian is sensitive to any external charge fluc- 
tuations. It is well known that single charge devices like the CPB have always 
suffered from charged two-level-fluctuators, which play the role of additional 
noisy gate voltage sources and can thus induce decoherence of the qubit state 
(see section 4). It is thus interesting to increase E j / E c  and to find an alternative 
to the measurement of (N). 
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Fig. 9. Coherent control of a CPB by E Delsing et al. Top: Simplified diagram of the setup showing 
that the CPB island is coupled capacitively to an RFSET, the RF reflecting power of which depends on 
the CPB average charge. Middle fight: Scanning electron micrograph of the sample showing the SET 
on the left and the (split) box on the fight. This sample was made by double angle shadow evaporation 
of aluminum through an e-beam patterned resist mask. Bottom: Rabi oscillations obtained with this 
readout, when applying repetitive fast DC pulses to the CPB gate. Here, A Qbox is the average 
charge on the box island. Courtesy of the "Quantum Device Physics" group, Chalmers University of 
Technology, GOteborg, Sweden. 
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3.2.3. Measurement of the split box persistent current: The Quantronium 
A possible alternative to measurements of <N) consists in measuring the per- 
sistent current of a split box or the magnetic field it produces. For measuring 
the magnetic field, the superconducting loop of the split CPB can be coupled by 
mutual inductance to a SQUID or to a tank circuit whose effective inductance be- 
comes different for the ]0) and [1) CPB states, as proposed by A. Zorin et al. [ 14]. 
The latter technique is similar to that used for the RFSET and is currently under 
development. 

We now describe the Quantronium, a setup proposed by D. Esteve [13] in or- 
der to discriminate the split box states directly through its loop persistent current. 
The circuit sketched in Fig. 10 consists of a split CPB with an additional current 
biased large Josephson junction with Josephson energy E j0 >> E j,  inserted in 
the superconducting loop. During the manipulation of the qubit, the bias cur- 
rent Ib is kept small, so that the effective inductance of the additional junction is 
small and that the phase y = arcsin(~oolb/Ejo) across it behaves classically. The 
Quantronium is thus, during manipulation, a split box with 6 = ~/~00 4- }/, the 
current biased junction playing only the role of an additional phase source for the 
split box. During the readout process, the additional junction is used to transfer 
adiabatically the information about the quantum state of the split box onto the 
phase y, in analogy with the Stern & Gerlach experiment, where the spin state of 
a silver atom is entangled with its transverse position. For this transfer, a trape- 
zoidal readout pulse Ib(t) with a peak value slightly below the critical current 
Io = Ejo/~oo is applied to the circuit. Starting from 6 = 0, the phases <y) and 
<6) grow during the current pulse and a state-dependent supercurrent develops 
in the loop. This current <i) adds algebraically to Ib in the large junction and 
modifies its switching rate F. By precisely adjusting the amplitude and duration 
of the Ib (t) pulse, the large junction switches during the pulse to a finite voltage 
state with a large probability pl for state ]1) and with a small probability P0 for 
state [0) [13]. The switching of the large junction to the voltage state is then de- 
tected by measuring the voltage across it with an amplifier at room temperature. 
Although this measurement scheme is projective in a first step, it is nevertheless 
destructive due to the large amount of quasi particles produced when the voltage 
develops across the readout junction. Besides, it is designed to be single shot, its 
efficiency being expected to exceed rl = pl - p0 = 95% for a critical current 
I0 "-~ 0.5 - 1 #A and for the persistent currents plotted in Fig. 6. A Quantronium 
sample has been operated successfully (see Fig. 10) with the microwave Ng pulse 
technique, although the maximum overall efficiency of its readout was only r/ 
20%. This sample has the longest coherence time observed so far (2004) in a 
Josephson qubit. The reasons for this success are analyzed in the next section 
devoted to decoherence of CPB-based- qubits. 
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Fig. 10. Coherent control of a Quantroniun by the Quantronics group of CEA Saclay. Top: simplified 
diagram of the setup showing the readout Josephson junction inserted in the loop of a split box.  A 
trapezoidal current pulse Ib (t) is applied to this junction so that the latter switches out of its zero 
voltage state with a higher probability if the Quantronium is projected onto I1) than if it is projected 
onto 10). Bottom fight: Scanning electron micrograph of a Quantronium made by double angle 
shadow evaporation of aluminum. Bottom left: Rabi oscillations obtained on a Quantronium with 
E j  = 0.86kB K and E C = 0.68kB K when applying repetitively a resonant microwave pulse to the 
gate and a current pulse to the readout junction. Each experimental point is an average over 5 × 104 
sequences. 
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4. Decoherence of Josephson charge qubits 

4.1. Evaluation of decoherence: a simple approach 

As with cany other quantum object, CPB-based-qubits are subject to decoherence 
due to their interaction with uncontrolled degrees of freedom present in their en- 
vironment. From a general point of view, these interactions between the CPB 
and its environment entangle them in a complex way, which can be analyzed 
in principle by writing the total Hamiltonian of the system { CPB+environment } 
and by computing the evolution of the qubit reduced density matrix. Although 
this method has been used successfully for calculating decoherence induced by 
an RFSET [29] reading a CPB, it is in practice intractable in many cases. More- 
over, it does not lead to analytical expressions showing directly the influence of 
each parameter and of each decoherence source, so that it is not always of great 
help for designing an experiment. Fortunately, decoherence during the free evo- 
lution of the qubit can be described in a much simpler way when the coupling 
between the qubit and its environment is weak. Indeed, an external parameter )` 
(such as Ng or 3) entering the Hamiltonian H = - 1 / 2  --J • H ()`) submitted to 
small quantum fluctuations from the external degrees of freedom can be treated 
as an operator of the environment. More precisely, each independent part X of 
the environment plAays the role of an independent quantum noise source on the 
centered operator ),0 - ), - (),). To first order, the coupling Hamiltonian between 
this source and the CPB is written 

where D z • --~ is the restriction o f - 2 0  H/O), to the {10), I1)} space. Then, from 
the noise properties of each source X, one calculates separately three relevant 
quantities that characterize X-induced decoherence: the first two characterize the 
depolarization of the fictitious spin representing the qubit. They are the excitation 
1-'t,x and relaxation I'¢,x rates giving the probability per unit time of X-induced 
10) ~ I1) and I1) ~ 10) transitions of the qubit, respectively. The third rele- 
vant quantity is the "dephasing function" f x  (t) - (exp[i A~ox(t)]) involving the 
X-induced random dephasing A~0x(t) between the two components of a super- 
posed state a(t)10) + b(t)exp[iA~ox(t)] I1) (note that f x ( t )  is not necessarily 
exponential and characterized by a rate). The evolution of the qubit density ma- 
trix is then easily deduced from the values of 1-'t,x, the values of 1 ~ , x  and the 
f x ( t )  functions. Introducing the total dephasing function F(t) -- I-Ix f x ( t )  and 
the total upward and downward rates I" 1, = Y~x 1-'l",x and F¢ = ~ x  1-'¢,x, the 
diagonal elements evolve exponentially towards their equilibrium values 1 - E 
and ~ - 1-'1,/1-'l with the characteristic rate I'1 - l-'t + F¢, whereas off-diagonal 
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elements decay as Fz(t) = exp[-I ' l t /2]F( t ) .  In the next sections, we calculate 
explicitly 1-'l,,x, 1-'¢,x and f x  (t) for the main decoherence sources X ,  in the case 
when the noise ~'~ is Gaussian and can be fully characterized by a generalized 
quantum spectral density function of angular frequency co [ 1 ]: 

SzX0 (co) - ~ -  d r  (t)~'ff (t + r) exp(-icor).  (4.2) 
OO 

In this expression, the prefactor is chosen so that S x z0 (co) coincides in the classical 
limit and at low frequency with the spectral density of the engineer. Note that 
S x z0 (co) is defined for positive and negative cof s, the positive and negative parts 
being proportional to the number of environmental modes that can absorb and 
emit a quantum hco, respectively. 

4.2. Overview of decoherence sources in a CPB 

B °I 
Fig. 11. Main decoherence sources in a Quantronium device. Quantum noise on Ng is generated by 
charged two-level-fluctuators (A) located near the CPB island and by voltage fluctuations of the series 
impedance (C) in the gate line. Quantum noise on 3 is generated by fluctuations of the magnetic field 
(B) and by current fluctuations of the finite impedance (D) in parallel with the current bias source of 
the readout. 

The uncontrolled degrees of freedom coupled to the idealized CPB of section 
2 include those of the CPB substrate, those of the electrical lines of the driving 
and readout circuitry, and also the CPB's microscopic internal degrees of freedom 
which have been considered as frozen up to now. As an example, Fig. 11 shows 
the main decoherence sources in a Quantronium device (see section 3.2.3), which 
are now presented briefly. 

Background charge noise First, microscopic charged two-level-fluctuators 
(A in Fig. 11) always present near the CPB island, either on the substrate or 
inside the Josephson junctions, are coupled to N and act on the box as additional 
uncontrolled Ng sources. Although this background charge noise (BCN) is out of 
equilibrium and its generalized quantum spectral density is unknown, its classical 
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"~BC N spectral density Ug, (co) "~ B~ Ico[ has been measured up to the MHz region, 

the values found for B being of order 10 -7 - 10 -9. 

Impedance of the gate line The finite series impedance Zg in the gate line 
(C in Fig. 11) can be regarded as an infinite collection of harmonic oscillators [ 1 ] 
also coupled to N and inducing quantum noise on Ng. The circuit as seen from 
the pure Josephson element of the CPB (junction capacitance not included) is 
equivalent [9] to an effective gate capacitance C~ in series with a voltage source 
Xg Vg having an internal impedance Zeq. In the weak coupling limit defined by 
Xg = Cg/C~ << 1 and for all relevant frequencies, the real part of Zeq is written: 

2 Re[Zg] Re[ Zeq ] "~ K g (4.3) 

At thermal equilibrium at temperature T, Zeq generates voltage fluctuations 
whose spectral density S, corresponds to Ng fluctuations with spectral density 

Zg 
SNg" 

S u - ~  l + c o t h  2ksT Re[Zeq], 

( C E )  2 2__h2co[ 1 + coth ( h c o ) ]R e [Z g ]  
sZ~ = -~e Su~tCg E2 2kt~T Rk 

where Rk = h/e 2 ~ 26kf2. 

(4.4) 

(4.5) 

Magnetic flux noise Fluctuations of the magnetic field threading the loop of 
a split CPB (B in Fig. 11), either due to the motion of vortices in the vicinity of 
the loop or more macroscopically due to the current noise in the wires producing 
the field, generate directly 3 noise. When the noise source is a circuit inductively 
coupled to the loop, its spectral density can be easily derived following the same 
method as we follow below for calculating the back-action of a Quantronium 
readout. 

Readout back-action For a CPB measured by an RFSET (see section 3.2.2), 
the stochastic tunneling of electrons into and out of the SET island generates 
quantum noise on Ng. The reader can refer to [27, 29] for a characterization 
of this noise. For the Quantronium, the back-action of the readout circuit is 
the quantum noise on 3 induced by the finite admittance YR in parallel with its 
current source (D in Fig. 11). More precisely, when a bias current Ib < I0 is 
applied to the Quantronium, small oscillations of the phase 3 are centered on 
3o ~- arcsin(Ib/Io) and the readout junction behaves as an inductance Ljo 

546 D. Vion 

q)o/[Io cos 30] much smaller than the inductance Lj  of the box junction. YR and 
LJO form together an effective admittance YR,eq = YR//LJO that generates 
current fluctuations characterized by the spectral density 

S I - ~  l + c o t h  Re[YR]. 
2ksT 

(4.6) 

I YR I being much smaller than the effective inductance of the series combination 
of the two CPB Josephson junctions, this current I goes through YR,eq and is 
converted into noise on voltage v = ~ood~/dt = I/YR,eq , or equivalently into a 

noise with spectral density 

( ' - SI 

I '1 YR -4-iLjow 
2 " (4.7) 

Internal decoherence sources Finally, as examples of internal decoherence 
sources, one can think of out-of-equilibrium quasiparticles tunneling across the 
Josephson junctions or of an atom in the CPB Josephson junction jumping back 
and forth between two atomic sites so that a tunneling channel of the junction 
is open and closed randomly, such that it induces noise on Ej .  Note that part 
of the decoherence of Josephson phase qubits has been attributed to this latter 
phenomenon [2]. 

4.3. Depolarization of a Cooper pair box 

Relaxation and excitation proceed by exchange of an energy quantum h~01 be- 
tween the qubit and an oscillating field of the environment with pulsation co = 
~01 = 2n'v01. Applying the Fermi golden rule to such processes gives: 

7r (D)~,±) 2 
rS 'x - 2 h S~°'x(~2°')' (4.8) 

7r (D)~ ±)  2 
Ft,x -- -~ h S~.o,X(- ~01), (4.9) 

where the transverse part of D z, Dz,± = 21 (IIOH/O~IO)l, is equal to 
A 

4Ec[ (0[ N 11) I for all Ng noise sources and equal to 2~o01 (0l I [1) [ for all 6 noise 
sources, according to (2.13) and (2.15), respectively. Going further requires then 
specifying the origin of the noise. For the background charge noise, the spectral 
density is unfortunately unknown in the GHz range that corresponds to ~01 so 
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that no serious prediction of F$,x and Fl,,x can be made. For the gate line im- 
pedance Zg(w) at a temperature T << hf2ol/ks, SNg,Zg (--f201) and SNg,Zg (f201) 
obey detailed balance and 

hf201 
rl"'Zg = e x p ( -  kBT ) << 1. 
F$,zg 

Then, after substituting Dz,± and (4.5) at zero temperature in (4.8), one gets the 
relaxation rate 

F~,zg = 167rXg 2 I(01N I1)12 Re[Zg(a01)] f201, (4.10) 
Rk 

2f201 sin 2 ot Re[Zg(f2Ol)]/Rk in the which takes the simpler form F$,zg -- 4JrXg 
limit E j / E c  << 1. In conclusion, a Re[Zg(20GHz)] as large as 10f2 coupled 
with Xg --~ 1 - 2% would induce relaxation of a CPB having a lk8 K transition 
energy with a rate of only 0.1 sin 2 ot MHz. 

We evaluate now the relaxation induced by a resistance R = 1/YR in paral- 
lel with the Quantronium readout junction. Substituting Dz,± and (4.7) at zero 
temperature in (4.8), one obtains after simple algebraic transformations: 

21(01]'11)] 2 R 
R 2 ' (4.11) 

which simplifieAs to FS,R -- 21 (01I'11)IZR/(h~2ol) for R << Lj0~01. At 
Ng = 1/2, (01 II1) increases linearly with the asymmetry d between the box 
junctions. F;,R varies as d 2 and a Quantronium with a lksK transition energy 
and an asymmetry d --- 5 % would relax with a rate of order 1 MHz under the in- 
fluence of a readout resistance R = 2~  at 20 GHz. Obtaining balanced junctions 
during the fabrication of a Quantronium is thus an important point. 

4.4. Random dephasing of a Cooper pair box 

In a semi-classical approach, the random phase Acpx (t) between the two compo- 
nents of asuperposed state is obtained by integration of the longitudinal fluctua- 
tions of Hx" 

t 

A~ox(t) = Dz,z~ f )~ (t')dt' , (4 .12) 

o 

where the longitudinal part of D z, Dz,z - {0l OH/O)~ 10) - (110H/O)~ I1) 
hOvol/O)~, is equal to - 2 E c  AN10 for all Ng noise sources and equal to -qg0Ail0 
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for all 3 noises sources, according to sections 2.4 and 2.6. An important point to 
notice is that the coefficients of sensitivity to charge and phase noise, DNg,z and 
D~,z, vanish when AN10 and Ai10 are equal to zero, i.e. at Ng = 0 and 3 = 0, 
where the transition frequency is stationary. Then, X~ (t) being a Gaussian noise 
in most cases, the ensemble average f x ( t )  = (exp[i Aqgx(t)]) is written 

f x(t) -- exp[-(Ago2(t ) ) /2]  (4.13) 

and depends only on the variance of the random phase, which can be calculated 
from the classical spectral density sX ° (co) of Xff" 

( ) - x  (co)sinc2 (--~ - ) (4.14) Aq92(t) = t do) Sz0 , 
O~ 

with sinc(x) = sin(x)/x. A full quantum calculation [9] of fx ( t ) ,  based on a 
A 

thermal average over a bath of harmonic oscillators linearly coupled to X, gives 
the same result: 

f x ( t )  - exp - ~ -  dco S~X0 (co)sinc2(-~ --) , (4.15) 
o o  

but with ~x being replaced by its quantum analogue. Applied to the background 
X0 

charge noise, (4.15) becomes 

t 2 In (4.16) 
t~ t ' 

where r is the time taken experimentally to define the average transition fre- 
quency, this time introducing a low frequency cutoff 1 / r  in the integral of (4.15). 
The function f e c u ( t )  decays almost as a Gaussian with an effective charac- 
teristic time T~ BCN = [2x/B ln (r / t )Ec  AN10/h] -1 that decreases almost as 
1/(Ng - 1/2) close to the charge degeneracy (see the AN10 variations of Fig. 
2). Assuming B ~ 10 -8 and r ~ 102s, one gets T~ ecu  ~ 50ns for a CPB with 
Ej  "~ Ec ~" lke K operated at Ng = 0.55. 

"~BC N In contrast to Ug, (w) spectral densities S x ' z0 (o~) of other noise sources are 

often rather flat below a cut-off frequency coc, so that for t > 1/We, S xzo (co) 
S x z0 (0) in the co range where the sinc square term gives its main contribution to 
the integral in (4.15) Consequently, f x ( t )  ~ exp[ x • - Fs0 t ] with a decay rate 

x z)2 F~ ~ Jr ---if- Sffo (co ~ 0) . (4.17) 
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At 50 mK, spectral densities (4.5) and (4.7) vary only by a factor two below 
200 MHz so that (4.17) holds for t > 5ns. Substituting the correct Dx,± and (4.5) 
[resp. (4.7)] at zero frequency in (4.17), one finds the contribution to random 
dephasing of the gate line circuit (resp. of the Quantronium readout): 

Zg 8yrx2AN20(Ngo)kST R 1-'~0 ~ , (4.18) 
h Rk 

1 (AilO(60))2kBTRk R ~ _  (4.19) 
1-'~° 8yr I0 cos 30 h R ' 

where R is the resistance of the gate voltage source (4.18) and the resistance in 
parallel with the Quantronium readout junction in (4.19), in the 0.1-100 MHz 
frequency range. Taking the same CPB parameters as in the previous section 

Zg 
and assuming an electronic temperature of 50 mK, one gets 1-'~o < 25kHz for 
R = 10f2, showing that the gate line is not an important dephasing channel. 
Assuming then typical values I0 ~ 500nA and R = 100~ for a Quantronium 

R ~ 262(rad)/cos 2 6oMHz. Therefore, l-'ff is readout circuit, one obtains F~0 
negligible close to 6o = 0 and increases very rapidly up to about 100 MHz at the 
top of the readout current pulse, where 6 approaches zr/2. 

4.5. Design rules and optimal working points 

We now focus on the requirements that an experimental setup has to fulfill in or- 
der to demonstrate an operational CPB-based-qubit. First, the CPB has to be reset 
in its reference stable state 10) with a small probability of error e > E - F 1, / 1-'l. 
This takes a reset time tr ~ e/1-'1 that defines the maximum repetition rate in 
an experiment. Secondly, during the manipulation of the state, the characteristic 
decay time T2* of F2(t) must be as long as possible in order to perform as many 
coherent single qubit or two qubit gate operations as possible. Consequently, 
T1 = 1/1-'l and the characteristic decay time T~ of the F function have to be 
maximized. For that purpose, a first action is of course to minimize all the noise 
spectral densities of section 4.2. A complementary approach is to choose a work- 
ing point where the sensitivity to noise is minimal. For a split box, according 
to sections 4.3 and 4.4, T1 and the T~'s can be maximized by choosing a ma- 
nipulation point such that (11I 10) ~ 0 and such that the transition frequency is 
stationary with respect to both Ng and 6 fluctuations. Figure 12 shows that the 
point (Ng - 1/2, 6 - 0) is such an "optimal manipulation point". But since 
both charge signal AN10 and current signal Ail0 vanish at this point, one has 
to apply a shift to Ng or 6 at the end of the manipulation to measure the qubit 
state through the charge or phase port. Then, the elementary measuring time tmo, 
defined as the time during which the readout interacts with the qubit after the 
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preparation of a particular quantum state, is constrained in a way that depends 
on the readout strategy. When the readout absorbs the transition energy of the 
qubit as described in section 3.2.1, the readout port must be the main relaxation 
channel in order to avoid errors. Therefore, the values of F$,x and tmo must obey 
1 / FI ~-- 1 / ['~ ~_ 1 / F$,readout <_ tmO. In all other cases, a readout error proba- 
bility smaller than er requires er T1 > tmo. Consequently, we wish to maximize 
T1 during readout by choosing a measurement point where (11I 10) -~ 0 as well. 
Moreover, tmo has to be longer than T~ since the qubit density matrix has to be- 
come diagonal before a projective measurement is completed. Since dephasing 
is required only during measurement, it is thus a good design rule to implement 
a switchable readout device such that T~ decreases by several orders of magni- 
tude when the readout is switched on, whereas 7"1 remains long. Moving away 
from an "optimal manipulation point" along a "slow relaxation line" is just such 
a switch. Finally, it is convenient to have a single shot readout, able to distinguish 
the two qubit states with a small error rate er within the time tmo. Otherwise, re- 
peating several times the preparation and the measurement of the same quantum 
state is required to reach the same target error rate. The Quantronium has been 
designed to fulfill all the requirements mentioned here and has demonstrated ex- 
perimentally good quantum coherence properties, which are presented in the next 
section. 

Ej = E c = 1 kBK 
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Fig. 12. Sensitivity to decoherence of a Quantronium with Ej = EC = lkBK and d = 2%, as 
a function of its reduced external parameters Ng and ~/27r. Left box: Loop current matrix element 
between states 10) and I1). This matrix element and consequently the relaxation rate of the qubit are 
minimal along the lines ~ = 0 and Ng = 1/2. Right box: Transition frequency of the Quantronium. 
The arrow indicates the stationary point (Ng = 1/2, ~ = 0) where pure dephasing vanishes to 
first order. Consequently, this is the optimal point for coherent manipulation of the Quantronium. 
For reading out the state, the working point is adiabatically moved along the bold solid line, where 
relaxation of the qubit induced by quantum noise on ~ is minimal. 
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4.6. Experimental characterization of decoherence 

The results presented below have been obtained with a Quantronium sample sim- 
ilar to that shown in Fig. 10, with Ej =- 0.86kBK, Ec = 0.68kBK, and an asym- 
metry d between the CPB junctions not precisely known, but lower than 5%. We 
first measured the relaxation time at the optimal working point by switching on 
the readout at some variable time td after applying a microwave 7r pulse that pre- 
pares the qubit in state [ 1) (see Fig. 13). A rough estimation of the readout resis- 
tance of the setup giving R(2OGHz) = lf2 - 5f2, the experimental T1 = 1.8/zs 
could be explained by an asymmetry coefficient d ~ 5% - 2%. 
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Fig. 13. Decay of the switching probability of the Quantronium's readout junction as a function of the 
delay between a microwave Jr pulse and the readout current pulse. The solid line is a fit of the data 
(dots) by an exponential shifted by the signal measured when no microwave is applied (horizontal 
bottom line). 

Then, spectroscopic measurements (see Fig. 14) of V01 were performed by ap- 
plying to the gate a weak continuous microwave irradiation suppressed just be- 
fore the readout current pulse. The variations of the switching probability as a 
function of the microwave frequency, display a resonance peak whose position 
v01 as a function of Ng and ~ leads to a precise determination of E j  and Ec. The 
resonance line shape being the Fourier transform of F2 (t), the full line width at 
half-maximum Av01 leads to an effective coherence time T2* -- c/AVolwith c 
1/Jr depending on the exact line shape. As expected, A v01 was found to be min- 
imal at the optimal point (Ng - 1/2, ~ = 0), where A v01 = 0.8 MHz. Conse- 
quently, 2T1 >> T2* "~ 0.4#s _~ T~ and decoherence is dominated by random de- 
phasing. When departing from the optimal point, the line broadens very rapidly. 
For Ng ~ 1/2, it also becomes structured and not reproducible (see top fight 
panel of Fig. 14) due to individual charged two-level-fluctuators. Nevertheless, 
the general trend (see bottom panel of Fig. 14) is that Av01 varies more or less 
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linearly with Ng - 1/2 and 8, the proportionality coefficients 0An01/O(Tl/2sr) 
and 0Av01/ONg being of order 0.3GHz. Noticing that v01 varies quadratically 
in the vicinity of the optimal point so that Dx,z ,~ hOvol/8~, cx ~, cx Av01, one 
deduces from section 4.4, that both charge and phase noises are peaked at low 
frequencies and that the random dephasing functions should decay as Gaussians. 
This effect is well understood for the charge noise, which is dominated by the 1/f 
contribution of microscopic origin. Using the actual parameters of the sample in 
(4.16), the experimental OAr01~ ONg leads to an amplitude B _~ 10 -7 for the 
BCN, a value in agreement with previous measurements on similar Josephson 
devices. By contrast, the origin of the low frequency phase noise is not under- 
stood. An important point to mention here is that the experimental value of T2* at 
the optimal working point corresponds to that estimated by taking into account 
the second order contribution of the charge and phase noises. 
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Fig. 14. Spectroscopy of a Quantronium. Top left panel: transition frequency as a function of 8 at 
Ng = 1/2 and as a function of Ng at 8 = 0. The solid line is a fit that gives Ej and E C. Right panels: 
resonance lines recorded with a small microwave power at three different working points (same scale 
for all lines). Bottom left panel: Full width at half-maximum Av01 of the resonance lines. Due to 
a slow and large charged two-level-fluctuator (TLF), data points can vary by a factor 2. The dotted 
lines indicate that Av01 varies linearly with the external parameters when this TLF is stable. 
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The direct measurement of the coherence time 7"2* during free evolution was 
obtained by performing a Ramsey-fringe-like experiment (see also [21]). One 
applies to the gate two slightly off-resonance zr/2 microwave pulses separated 
by a delay At during which the spin representing the qubit state precesses freely 
at frequency A v in the equatorial plane of the Bloch sphere. Whereas the first 
pulse simply sends the spin onto the equator, the second one converts the phase 
accumulated during At into a longitudinal component of the spin. The probabil- 
ity to measure 11) at the end of the sequence oscillates as cos2(7r A va t )  with an 
amplitude that decays as F2(t). Figure 15 shows the result of such an experiment 
performed at the optimal manipulation point. Although the low signal to noise 
ratio and the long term drift due to 1/f noise prevents determination of wether the 
decay of the oscillations is more Gaussian than exponential, a fit of the data leads 
to/'2* _~ 0.5/zs, a value that corresponds to that previously deduced from the res- 
onance line width. Given the transition period 1/vol ~ 60ps, the coherence time 
7"2* corresponds to about 8000 free precession turns around the z axis. Assuming 
that a bit flip can be performed with a microwave pulse of only 30 oscillations, 
i.e. in a time ~ 2ns, 7"2* corresponds also to the time required for about 250 bit 
flips. 
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Fig. 15. Ramsey fringe experiment on a Quantronium: When two n:/2 microwave pulses detuned 
with Av = 20.6 MHz and separated by At are applied to the gate, the switching probability of the 
readout junction oscillates as a function of At with frequency Av. Each experimental point (dot) is 
an average over 50000 sequences. The solid line is a fit by an exponentially decaying cosine, the 
decay time constant of which corresponds to the coherence time T2*. 

The coherence can also be maintained artificially during a time longer than 
7"2* using NMR-like echo sequences [18]. An intermediate zr pulse is inserted 
in a Ramsey sequence, a time Atl < At after the first zc/2 pulse (see Fig. 16). 
Assuming for instance that all rotations are performed around the yl axis of the 
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Bloch sphere, the effect of  this rr pulse is to change rapidly the phase of the spin 
from 99 = 2zr A v Atl to ~o = re" -- 2zr A v Atl .  Then, the phase grows again by an 
amount  27r A v ( A t  - Atl)  before the last 7r/2 pulse. The probabili ty to measure  
I1) at the end of the sequence is s in2[ r rAv(At  - 2At l ) ] .  When  Atl = At~2, 
this probabili ty is thus less sensitive to A v fluctuations than the Ramsey function 
cos2(zrAvAt)  . In other words, a r r  pulse in the middle of an echo sequence 
makes the spin go a longer (resp. shorter) path along the equator when the pre- 
cession speed is faster (resp. slower), so that the ending point is the same from 
sequence to sequence, provided that A v is constant within a sequence. Figure 16 
compares  a Ramsey sequence and an echo sequence with variable Atl  per formed 
at Ng = 0.52 and 8 = 0, where T2* is reduced to 30ns. For At  = 2Atl  ~ 20T2", 
the ampli tude of  the echo is still 20% of the m a x i m u m  ampli tude whereas the 
Ramsey  signal is of  course zero. This result confirms that decoherence is essen- 
tially due to charge noise at frequencies lower than 1 / A t  ~ 1 MHz. Al though 
mapping the ampli tude of  the echo as a function of  At for different working 
points can give much information on the shape of  noise spectral densities, no 
complete  study could be made on the sample presented here. 
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Fig. 16. Comparison between a Ramsey and an echo sequence (top fight and bottom fight pictograms, 
respectively) with a Quantronium circuit operated at the working point (Ng = 0.52, 8 = 0) with a 
detuning A v = 41MHz. Top panel: Ramsey fringes of the Quantronium's switching probability 
indicating a coherence time of only 30 ns. Bottom panel: Echo signal taken at fixed At = 0.59#s 
as a function of At 1 . Very close to Atl -- At/2, the amplitude of the echo is maximum and equal 
to about 20% of the signal at At = 0. The dashed vertical line indicates Atl and points out that the 
Ramsey signal has completely disappeared for the same At. 
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5. Two-qubit-gates with capacitively coupled Cooper pair boxes 

Being able to implement any quantum algorithms requires adding to all possible 
single qubit operations a two-qubit gate such that the ensemble forms a so-called 
universal set of gates [30]. Many coupling schemes of two (or more) CPBs have 
been proposed to realize such 2-qubit gates. The nature of the coupling can be 
either capacitive or inductive. In the first case, two CPB islands are coupled by 
a capacitor, whereas in the second case, the loops of two split CPBs are coupled 
by a mutual inductance or galvanically by an inductor or an additional Josephson 
junction. Although ideally the coupling should be switchable and tunable, using 
a constant coupling is of course simpler. In this paper, we restrict ourselves to the 
constant capacitive coupling between two CPBs, which is the only scheme that 
has been implemented at the time of writing. 

The Hamiltonian of two CPBs indexed 1 and 2, the islands of which are cou- 
pled by a capacitor Cc, is the sum of two terms (2.3) with Josephson energies in- 
cluding eventually a phase term if the box is split and with Cooper pair Coulomb 
energies involving now Cr~ ~ Cg + Cj --1" CC, and of a coupling term 

A A 

E cc ( N 1  - N g l ) ( N 2  - Ng2) with Ecc "~ E c 1 E c 2 ~  
Cc 

(2e)2 • 
(5.1) 

Within the spin formalism and when E j / E c  << 1, Hamiltonian (5.1) is rewritten 
in the pure charge state basis (10)cl, I1)cl) ® ([0)c2, I1)c2): 

A 1{ [ , 2]} H(Ngl ,  Ng2) -- - -~ EJl'ff'x1 "°r- (1 - 2Ngl)EcI + (1 - 2 N g 2 ) ~ E  c ~'al 

2 Esz~x2 + (1 - 2Nez)Eca + (1 - 2 N g l ) ~  ~'z2 

(5.2) 

Ecc A 
"+- ~ O'Z10"Z2 , 

where constant terms that depend only on Ngl and Ng2 have been dropped. The 
coherent evolution induced by this Hamiltonian has been experimentally demon- 
strated [31] with two strongly coupled (Ecc "~ E jl,2) CPBs, using the fast 
DC gate pulses (see section 3.1.1) to the charge co-degeneracy point Ngl = 
Ng2 = 1/2, and using the readout technique described in section 3.2.1. A 
conditional operation close to the Controlled-NOT gate has also been demon- 
strated [32] with the same system. The main idea behind this experiment is to 
regard the "Szl"Sz2 coupling as shifting the CPB2 charge degeneracy point by 
a quantity that depends on the state of CPB 1. Indeed, this degeneracy point is 
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defined by (1 - 2Ng2)E~c2 + (1 - 2Ng] qz 1 / 2 ) E c c / 2  = 0. A gate 2 pulse 
bringing CPB2 to the charge degeneracy when CPB 1 is in state 10)el, brings it 
A N g 2  --  1/2 - E c c / 4 U c 2  away from the degeneracy when CPB1 is in state 
I1)cl. According to section 3.1.1, the max imum probability of i l)c2 after the 
pulse drops rapidly with A N g 2  as 1/{1 + [2 E c A N g Z / E j ]2 } ,  so that bit 2 can be 
flipped when bit 1 is in state 10)el, whereas it is almost unchanged when bit 1 
is in state I1)cl. Figure 17 shows the experimental  results obtained by the NEC 
group with such a C-NOT. 

Pulse gate 2 Pulse gate 1 

a • I ]1  

eL,'"', - 
0 2 4 6 8 10 

3 b ." "" • [ 

1 ~ I~ i1.1 .contr9i qu.bit 
/ =ll i ' '  o target quott 

o i l l ,  , I I = J 

0 2 4 6 8 10 
EjI(GHz) 

Fig. 17. Demonstration of a C-NOT-type quantum gate with two capacitively coupled CPBs by T. 
Yamamoto and co-workers. Left: Scanning electron micrography of the device. The qubits are 
manipulated using the fast dc pulse technique. Here, the target qubit is prepared in the pure charge 
state 10)c (a) or I1) c (b) whereas the control qubit is prepared with a dc pulse of constant width in 
a superposition state that depends on the Josephson energy E j l  of qubit 1. Finally, a gate 2 pulse 
performs the CNOT as explained in the text. Right panels: Anticorrelation (a) and correlation (b) 
between the two probe currents as a function of E j 1. Courtesy of T. Yamamoto et al., NEC, Japan. 

Another  type of  gate can be developed by working in the uncoupled energy 
eigenbasis (10)1, l l ) l )®(10)2,11)2)  at fixed Ngl - Ng2 = 1/2, where (01N 10) - 
(11N I1) - 1/2. The Hamitonian (5.1) is now rewritten as 

1 1 
n ( N g  l , Ng2)  = - -~ h vl ~ z 1  - -~ h l)2~z2 Jr- K"ff X l"ff x2  , (5.3) 

with K -- E c c  l1 (11Sl  [0)1[ 12 (11 N210>21, the corresponding matrix being 

A 
H =  

[ - h F  K ] 
K hF [0] 

[0] K hay 
2 (100), I 11),101),ll0)) 

(5.4) 
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with ~ = (vl + v2)/2 and Av = vl - v2. In the weak coupling limit defined 
by Cc << Czl,2, the coupling strength K / h ~  between 100) and Ill) is always 
weak, whereas coupling strength 2 K / h A v  between 101) and I10) can be var- 
ied by adjusting the difference between the two qubit transition frequencies. By 
equating vl and v2, this coupling is maximized and 101) and I10) are simply 
swapped in a time tSWAP : zrh/2K, whereas 100) and l 1 l) are almost un- 
changed. When applying the effective coupling during tSWAp/2, one obtains 
the so-called ~/ iSWAP  gate, which entangles 101) and I10) in a simple and ef- 
ficient way and which forms a universal set of gates when complemented with 
1-qubit operations. Moreover, the ~Xl~X2 nature of the coupling has the great 
advantage of conserving the property of a vanishing random dephasing at the 
optimal manipulation point. An experiment aiming at testing such an ~/i S W AP  
gate prototype with two capacitively coupled Quantroniums is currently in prepa- 
ration. 

6. Conclusions 

As anticipated in 1995 immediately after the first successful characterization of 
a Cooper pair box [7], this device has been shown to have sufficiently good 
quantum properties to be used for building quantum bit prototypes. In less 
than ten years, two different schemes for driving the quantum state of a CPB 
and three very different readouts were developed and tested in several laborato- 
ries [16, 17, 20, 25]. Spectroscopy and coherent free and driven quantum evolu- 
tion were demonstrated over times ranging from a few nanoseconds up to about 
a microsecond. Other Josephson qubits were also able to reach comparable 
results and Josephson qubits should now be considered as a single family, the 
sub-families having only historical justifications. The research community in- 
volved in the development of Josephson qubits has made great progress in un- 
derstanding how decoherence occurs in electrical circuits and "quantum elec- 
trical engineering" was really born. The concept of optimal manipulation and 
measuring points of such circuits could for instance be formulated and experi- 
mentally tested. Moreover, experimental protocols for characterizing decohering 
effects and decoherence sources are continuously improving. With the devel- 
opment of more complex manipulations of Josephson qubits, methods to limit 
decoherence such as NMR-like echoes and spin locking have already been or are 
about to be tested. Preliminary experiments on two coupled CPB-based-qubits 
have demonstrated in 2003 a first solid-state-two-qubit-gate prototype. Never- 
theless, the route towards a real quantum processor incorporating, for instance, 
quantum error correcting circuits is still long. A good quantum-non-demolition 
single-shot-readout is still lacking, the precision of qubit manipulations is still 
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weak compared to that achieved in quantum optics, and coherence times must 
be increased by one or two orders of magnitude to start implementing simple al- 
gorithms. Finally, the scalability of Josephson qubits is still to be demonstrated. 
To conclude, although we do not think that any serious prediction can be made 
about the future existence or not of a (Josephson) Quantum computer, we are con- 
vinced that developing Josephson qubits is a very valuable program of research 
that paves the way towards a truly quantum electronics and toward machines in 
which quantum physics will manifest itself at a more "macroscopic" scale. 
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